{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bf2da696280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703346901157246148, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOniTt63LU/o9jZPjKc4D4LSJ+7qWHFvQAAAAAAAAAAM32JvbYEe7z6XC09gjo2vXYX9jxLU9Q9AACAPwAAgD96Y0G+u+KwvPIZfrpGkg25/E4hPgWyzzkAAIA/AACAPzOtvb15Mz4/X+APvo+sNb/1Awm92DaHvQAAAAAAAAAAZu57PVyDbboWVjMyG7nyrnTnpTpwDLuyAACAPwAAgD8zFKO8NwF6Pu/nHr39Ir6+PNwfPRitp7wAAAAAAAAAAM18Oj2JqrQ/XK89P5Z9fb3oJdm8HrD+OgAAAAAAAAAAIK2MPsryCD8KLL09UZwCv0xnej501LC6AAAAAAAAAACNNCE+G3jjPS2uYb4Ml5m+sjZPPJLoZ70AAAAAAAAAACAZQ767L768j3OpOBJlMjZZ1Co+HVrUtwAAgD8AAIA/zbZhPkSE7T66jrE9vBsNv6UwAD4dcii9AAAAAAAAAAAaUWW9JkCsP7iemb7ig8a+MOiGvc3W0L0AAAAAAAAAAI0qPj6hOZe8RDaIOyrs9Lm1+g2+JALKugAAgD8AAIA/8zJIvqGUrrxmp/K7jk1hutXZGz4hUjA7AACAPwAAgD+gZEi+QU/VvLzrxjq1dWA5rhVEPl5pCroAAIA/AACAP1Vjmb7NmMs+IgpHPZaFwb6rq5+9sNW8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDJsUypJf+MAWyUS8uMAXSUR0CdTjqpcX3ydX2UKGgGR0BwzRA0Kqn4aAdL/mgIR0CdT1GEwnIAdX2UKGgGR0BGfCqp97WvaAdLumgIR0CdT8ntfG+9dX2UKGgGR0Bzl7IU8FINaAdNIAFoCEdAnVAwF9roGXV9lChoBkdAbuesQumJnGgHS79oCEdAnVA6QvHtGHV9lChoBkdAZJ6Qd0aIe2gHTegDaAhHQJ1QQeq7yx11fZQoaAZHQHIxY0Mw1zhoB00aAWgIR0CdUNfgaWHDdX2UKGgGR0Bzn+Cxu89PaAdNIgFoCEdAnVJxRZU1h3V9lChoBkdAbecJBPbfxmgHS7ZoCEdAnVLLaRISUXV9lChoBkdAcEomTkhib2gHS8loCEdAnVMvcafjCHV9lChoBkdAcCoC4Bmwq2gHTSIBaAhHQJ1U+DsdDIB1fZQoaAZHQHAxm3WnTApoB0vFaAhHQJ1VbP9kz411fZQoaAZHQHI9OXRgJC1oB00FAWgIR0CdVmBKtga4dX2UKGgGR0BuTaFVT72taAdL2GgIR0CdVvL1EmY0dX2UKGgGR0ByCpZjhDPXaAdL+2gIR0CdV7uZkTYedX2UKGgGR0Bx4jIdU83daAdLuWgIR0CdWPKZUkv9dX2UKGgGR0BzFvlaKUFCaAdNHAFoCEdAnVlZ3kgfVHV9lChoBkdAb+c9Mbm2cGgHTSQBaAhHQJ1agZCOWB11fZQoaAZHQHKxOxwAEMdoB0v/aAhHQJ1bEQSSNfh1fZQoaAZHQFqHLORkmQdoB03oA2gIR0CdW9vxpcoqdX2UKGgGR0BwC1H4GlhxaAdLyWgIR0CdXAlIVdondX2UKGgGR0BxuZEORT0haAdNFgFoCEdAnVzBUm2LHnV9lChoBkdAcGBSowVTJmgHS9FoCEdAnV28JIDoyXV9lChoBkdAcAehEjPfK2gHS/hoCEdAnV4O2d/ax3V9lChoBkdAcFtYZl4C62gHS9JoCEdAnV78uvllsnV9lChoBkdAcPMQJHAh0WgHS8toCEdAnV/bDhtLtnV9lChoBkdAcCsJLM9r42gHS+JoCEdAnWEQX2ugYnV9lChoBkdAcbbxsEaESWgHTSYBaAhHQJ1hGvV3EAJ1fZQoaAZHQG//V+y7f51oB0vFaAhHQJ1hIbbUPQR1fZQoaAZHQGK/T7VJ+UhoB03oA2gIR0CdYndyDIzWdX2UKGgGR0BgTx7ojfNzaAdN6ANoCEdAnWLZHI6sAHV9lChoBkdAcM2/oJRfnmgHS/NoCEdAnWM5UT+NtXV9lChoBkdAcK1dtl7MPmgHS8xoCEdAnWSIzi0fHXV9lChoBkdAcJJqzZ6D5GgHS91oCEdAnWa9xZMcqHV9lChoBkdAc0xrP+n622gHS9xoCEdAnWe43Jgb63V9lChoBkdAcbkldTo+wGgHS9NoCEdAnWjQCCBf8nV9lChoBkdAcOT/bCaZyGgHTUYBaAhHQJ1p3ymQ8wJ1fZQoaAZHQG0MTkQwsXloB01zAWgIR0CdahYf4h2XdX2UKGgGR0Bv5Zle4TbnaAdLv2gIR0Cdaqkj5bhWdX2UKGgGR0ByQcumJm/WaAdL12gIR0CdayEVWS2ZdX2UKGgGR0BxpVDQZ4wAaAdNGQFoCEdAnW1Zw0fozXV9lChoBkdAYm+pkwvg32gHTegDaAhHQJ1ttjZteld1fZQoaAZHQHLg/g3tKI1oB0vyaAhHQJ1uOOdXko51fZQoaAZHQG5PzXrdFfBoB0vXaAhHQJ1vWUA1ejV1fZQoaAZHQG8++iBXjlxoB0vJaAhHQJ1vv+DOC5F1fZQoaAZHQGCTFTvRZ2ZoB03oA2gIR0CdcNIWP91mdX2UKGgGR0BwkN7ngYP5aAdLwWgIR0CdcUI5o4+9dX2UKGgGR0BwrcEHMUypaAdL02gIR0Cdcgo1k1/EdX2UKGgGR0Bwg1whnrY5aAdLy2gIR0CdckSZBsyjdX2UKGgGR0BvgqF0xM37aAdLyGgIR0CdcpCIUJv6dX2UKGgGR0BhDo/s3Q2NaAdN6ANoCEdAnXNh5HEuQXV9lChoBkdAccOcSXdCV2gHS9xoCEdAnXT3hsImgXV9lChoBkdAbjnGrCFbmmgHS/VoCEdAnXdXPZ7HAHV9lChoBkdAcUMx+KCQLmgHS+poCEdAnXhSuIRAbHV9lChoBkdAcAiYbsF+u2gHS8NoCEdAnXj4I0IkaHV9lChoBkdAcA3+ocaOxWgHTa4BaAhHQJ154j8k2P11fZQoaAZHQHIDe1Bt1p1oB008AWgIR0Cdeidy1eBydX2UKGgGR0BvR43m3fALaAdLxGgIR0CdetygPEsKdX2UKGgGR0BxPeEYfnwHaAdL+WgIR0CdevUipvP1dX2UKGgGR0Bwct0IToMbaAdLtWgIR0Cde00FKTStdX2UKGgGR0Bw4a1YyO7yaAdL8GgIR0CdfHeKsMiKdX2UKGgGR0Bx2a/Dcdo4aAdNLgFoCEdAnX72oegctHV9lChoBkdAcJdWkJrtV2gHS9xoCEdAnX9mvW6K+HV9lChoBkdAcg68BMi8nWgHS9NoCEdAnYFcXSBsh3V9lChoBkdAbR27TUiIL2gHS+RoCEdAnYKvJq7AcnV9lChoBkdAXYxRm9QGfWgHTegDaAhHQJ2C3UExIrh1fZQoaAZHQG/F0Zm7J4loB0vLaAhHQJ2C6Ei+tbN1fZQoaAZHQGRV3I2fkFRoB03oA2gIR0Cdgwp+c6NmdX2UKGgGR0Bv4xoduHeraAdLxGgIR0Cdg2zAeq7zdX2UKGgGR0BvkdP8AJb/aAdL4WgIR0CdhErHU+cIdX2UKGgGR0BwamxQizLPaAdL52gIR0CdhM9F4LThdX2UKGgGR0Bxg4cNpdrwaAdLxmgIR0CdhrDoQnQZdX2UKGgGR0BuiW9WZJCjaAdLtmgIR0Cdh31Fpfx+dX2UKGgGR0BhtAwwj+rEaAdN6ANoCEdAnYgmHck+o3V9lChoBkdAYS8UM5OrQ2gHTegDaAhHQJ2ILYSQHRl1fZQoaAZHQHBkoR/ViF1oB0vCaAhHQJ2JXefqX4V1fZQoaAZHQG8dmgBcRlJoB0vJaAhHQJ2JbJvHcUN1fZQoaAZHQHBQv9P1tfpoB0vSaAhHQJ2JvYe1a4d1fZQoaAZHQHCAHAqNIbxoB0vRaAhHQJ2KOktVaOh1fZQoaAZHQHFEAOvt+kRoB02PAWgIR0Cdiv/DLr5ZdX2UKGgGR0Buq09wFTvRaAdL1mgIR0Cdiyl4TsY3dX2UKGgGR0Bwe2fwqiGnaAdLx2gIR0CdizCWu5jIdX2UKGgGR0BycNRZU1htaAdNJwFoCEdAnYv5lOGj9HV9lChoBkdAcDClwcYIjWgHTQkCaAhHQJ2MSuOjqOd1fZQoaAZHQHA8CZa3ZwpoB0vFaAhHQJ2MpSQ5myx1fZQoaAZHQHH4tkauOjtoB0u8aAhHQJ2M+t5le4V1fZQoaAZHQHA5mkFfReFoB0vwaAhHQJ2O97jT8YR1fZQoaAZHQHI5s1KoQ4FoB0u7aAhHQJ2PeoZQ53l1fZQoaAZHQHAMNQ9A5aNoB0vcaAhHQJ2PohEBsAN1fZQoaAZHQHMjQ1WKdhBoB00IAWgIR0Cdj7jiGWUsdX2UKGgGR0BvBk65oXbeaAdLwWgIR0CdkJKR+z+ndX2UKGgGR0ByIXZmI0qIaAdNCQFoCEdAnZFCGnGbTnV9lChoBkdAb8UhUzbeuWgHS+BoCEdAnZJ9L6DXe3V9lChoBkdAcUBNW2gFo2gHTQ8BaAhHQJ2TC1E3Kjl1fZQoaAZHQG+yGe18b71oB0vRaAhHQJ2TOWAwwkB1fZQoaAZHQGO8dBBzFMtoB03oA2gIR0Cdk25qdpZfdX2UKGgGR0BwKLR+jM3ZaAdNFQFoCEdAnZRwJC0F83V9lChoBkdAbmsPYnOSn2gHS79oCEdAnZU6hxo7FXV9lChoBkdAccr8Q7LdN2gHS8ZoCEdAnZWZ8fFJhHV9lChoBkdAcPK3XqZ+hGgHTTQBaAhHQJ2VwkTpPh11ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}