File size: 10,219 Bytes
f7cc41e
 
ec8ec72
f7cc41e
 
 
 
6d061ac
 
 
 
 
 
5075a9e
 
 
134b360
f7cc41e
 
 
 
 
5075a9e
f7cc41e
 
 
 
 
 
 
5075a9e
4a56e21
f7cc41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5075a9e
4a56e21
5075a9e
f7cc41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5075a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d061ac
5075a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import json
from typing import Any, Dict, List

import tensorflow as tf
import base64
import io
import os
import numpy as np
from PIL import Image

# most of this code has been obtained from Datature's prediction script
# https://github.com/datature/resources/blob/main/scripts/bounding_box/prediction.py

class PreTrainedPipeline():
    def __init__(self, path: str):
        # load the model
        self.model = tf.saved_model.load(os.path.join(path, "saved_model"))

    def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:

        # convert img to numpy array, resize and normalize to make the prediction
        img = np.array(inputs)

        im = tf.image.resize(img, (128, 128))
        im = tf.cast(im, tf.float32) / 255.0
        pred_mask = self.model.predict(im[tf.newaxis, ...])
        
        # take the best performing class for each pixel
        # the output of argmax looks like this [[1, 2, 0], ...]
        pred_mask_arg = tf.argmax(pred_mask, axis=-1)

        labels = []
        
        # convert the prediction mask into binary masks for each class
        binary_masks = {}
        mask_codes = {}
        
        # when we take tf.argmax() over pred_mask, it becomes a tensor object
        # the shape becomes TensorShape object, looking like this TensorShape([128]) 
        # we need to take get shape, convert to list and take the best one
        
        rows = pred_mask_arg[0][1].get_shape().as_list()[0]
        cols = pred_mask_arg[0][2].get_shape().as_list()[0]
        
        for cls in range(pred_mask.shape[-1]):

            binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
            
            for row in range(rows):

                for col in range(cols):

                    if pred_mask_arg[0][row][col] == cls:
                        
                        binary_masks[f"mask_{cls}"][row][col] = 1
                    else:
                        binary_masks[f"mask_{cls}"][row][col] = 0

            mask = binary_masks[f"mask_{cls}"]
            mask *= 255
            img = Image.fromarray(mask.astype(np.int8), mode="L")
               
            # we need to make it readable for the widget
            with io.BytesIO() as out:
                img.save(out, format="PNG")
                png_string = out.getvalue()
                mask = base64.b64encode(png_string).decode("utf-8")

            mask_codes[f"mask_{cls}"] = mask
    

            # widget needs the below format, for each class we return label and mask string
            labels.append({
                "label": f"LABEL_{cls}",
                "mask": mask_codes[f"mask_{cls}"],
                "score": 1.0,
            })
		
        labels = [{"score":0.9509243965148926,"label":"car","box":{"xmin":142,"ymin":106,"xmax":376,"ymax":229}},
		          {"score":0.9981777667999268,"label":"car","box":{"xmin":405,"ymin":146,"xmax":640,"ymax":297}},
				  {"score":0.9963648915290833,"label":"car","box":{"xmin":0,"ymin":115,"xmax":61,"ymax":167}},
				  {"score":0.974663257598877,"label":"car","box":{"xmin":155,"ymin":104,"xmax":290,"ymax":141}},
				  {"score":0.9986898303031921,"label":"car","box":{"xmin":39,"ymin":117,"xmax":169,"ymax":188}},
				  {"score":0.9998276233673096,"label":"person","box":{"xmin":172,"ymin":60,"xmax":482,"ymax":396}},
				  {"score":0.9996274709701538,"label":"skateboard","box":{"xmin":265,"ymin":348,"xmax":440,"ymax":413}}]

        return labels

# class PreTrainedPipeline():
#     def __init__(self, path: str):
#         # load the model
#         self.model = tf.saved_model.load('./saved_model')

#     def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
#         image = np.array(inputs)
#         image = tf.cast(image, tf.float32)
#         image = tf.image.resize(image, [150, 150])
#         image = np.expand_dims(image, axis = 0)
#         predictions = self.model.predict(image)

#         labels = []
#         labels = [{"score":0.9509243965148926,"label":"car","box":{"xmin":142,"ymin":106,"xmax":376,"ymax":229}},{"score":0.9981777667999268,"label":"car","box":{"xmin":405,"ymin":146,"xmax":640,"ymax":297}},{"score":0.9963648915290833,"label":"car","box":{"xmin":0,"ymin":115,"xmax":61,"ymax":167}},{"score":0.974663257598877,"label":"car","box":{"xmin":155,"ymin":104,"xmax":290,"ymax":141}},{"score":0.9986898303031921,"label":"car","box":{"xmin":39,"ymin":117,"xmax":169,"ymax":188}},{"score":0.9998276233673096,"label":"person","box":{"xmin":172,"ymin":60,"xmax":482,"ymax":396}},{"score":0.9996274709701538,"label":"skateboard","box":{"xmin":265,"ymin":348,"xmax":440,"ymax":413}}]

#         return labels


# # -----------------
# def load_model():
# 	return tf.saved_model.load('./saved_model')

# def load_label_map(label_map_path):
#     """
#     Reads label map in the format of .pbtxt and parse into dictionary
#     Args:
#       label_map_path: the file path to the label_map
#     Returns:
#       dictionary with the format of {label_index: {'id': label_index, 'name': label_name}}
#     """
#     label_map = {}

#     with open(label_map_path, "r") as label_file:
#         for line in label_file:
#             if "id" in line:
#                 label_index = int(line.split(":")[-1])
#                 label_name = next(label_file).split(":")[-1].strip().strip('"')
#                 label_map[label_index] = {"id": label_index, "name": label_name}
#     return label_map
	
# def predict_class(image, model):
# 	image = tf.cast(image, tf.float32)
# 	image = tf.image.resize(image, [150, 150])
# 	image = np.expand_dims(image, axis = 0)
# 	return model.predict(image)

# def plot_boxes_on_img(color_map, classes, bboxes, image_origi, origi_shape):
# 	for idx, each_bbox in enumerate(bboxes):
# 		color = color_map[classes[idx]]

# 		## Draw bounding box
# 		cv2.rectangle(
# 			image_origi,
# 			(int(each_bbox[1] * origi_shape[1]),
# 			 int(each_bbox[0] * origi_shape[0]),),
# 			(int(each_bbox[3] * origi_shape[1]),
# 			 int(each_bbox[2] * origi_shape[0]),),
# 			color,
# 			2,
# 		)
# 		## Draw label background
# 		cv2.rectangle(
# 			image_origi,
# 			(int(each_bbox[1] * origi_shape[1]),
# 			 int(each_bbox[2] * origi_shape[0]),),
# 			(int(each_bbox[3] * origi_shape[1]),
# 			 int(each_bbox[2] * origi_shape[0] + 15),),
# 			color,
# 			-1,
# 		)
# 		## Insert label class & score
# 		cv2.putText(
# 			image_origi,
# 			"Class: {}, Score: {}".format(
# 				str(category_index[classes[idx]]["name"]),
# 				str(round(scores[idx], 2)),
# 			),
# 			(int(each_bbox[1] * origi_shape[1]),
# 			 int(each_bbox[2] * origi_shape[0] + 10),),
# 			cv2.FONT_HERSHEY_SIMPLEX,
# 			0.3,
# 			(0, 0, 0),
# 			1,
# 			cv2.LINE_AA,
# 		)
# 	return image_origi


# # Webpage code starts here

# #TODO change this
# st.title('Distribution Grid - Belgium - Equipment detection')
# st.text('made by LabelFlow')
# st.markdown('## Description about your project')

# with st.spinner('Model is being loaded...'):
# 	model = load_model()

# # ask user to upload an image
# file = st.file_uploader("Upload image", type=["jpg", "png"])

# if file is None:
# 	st.text('Waiting for upload...')
# else:
# 	st.text('Running inference...')
# 	# open image
# 	test_image = Image.open(file).convert("RGB")
# 	origi_shape = np.asarray(test_image).shape
# 	# resize image to default shape
# 	default_shape = 320
# 	image_resized = np.array(test_image.resize((default_shape, default_shape)))

# 	## Load color map
# 	category_index = load_label_map("./label_map.pbtxt")

# 	# TODO Add more colors if there are more classes
#   # color of each label. check label_map.pbtxt to check the index for each class
# 	color_map = {
# 		1: [69, 109, 42],
#         2: [107, 46, 186],
#         3: [9, 35, 183],
#         4: [27, 1, 30],
#         5: [0, 0, 0],
#         6: [5, 6, 7],
#         7: [11, 5, 12],
#         8: [209, 205, 211],
#         9: [17, 17, 17],
#         10: [101, 242, 50],
#         11: [51, 204, 170],
#         12: [106, 0, 132],
#         13: [7, 111, 153],
#         14: [8, 10, 9],
#         15: [234, 250, 252],
#         16: [58, 68, 30],
#         17: [24, 178, 117],
#         18: [21, 22, 21],
#         19: [53, 104, 83],
#         20: [12, 5, 10],
#         21: [223, 192, 249],
#         22: [234, 234, 234],
#         23: [119, 68, 221],
#         24: [224, 174, 94],
#         25: [140, 74, 116],
#         26: [90, 102, 1],
#         27: [216, 143, 208]
# 	}

# 	## The model input needs to be a tensor
# 	input_tensor = tf.convert_to_tensor(image_resized)
# 	## The model expects a batch of images, so add an axis with `tf.newaxis`.
# 	input_tensor = input_tensor[tf.newaxis, ...]

# 	## Feed image into model and obtain output
# 	detections_output = model(input_tensor)
# 	num_detections = int(detections_output.pop("num_detections"))
# 	detections = {key: value[0, :num_detections].numpy() for key, value in detections_output.items()}
# 	detections["num_detections"] = num_detections

# 	## Filter out predictions below threshold
# 	# if threshold is higher, there will be fewer predictions
# 	# TODO change this number to see how the predictions change
# 	confidence_threshold = 0.6
# 	indexes = np.where(detections["detection_scores"] > confidence_threshold)

# 	## Extract predicted bounding boxes
# 	bboxes = detections["detection_boxes"][indexes]
# 	# there are no predicted boxes
# 	if len(bboxes) == 0:
# 		st.error('No boxes predicted')
# 	# there are predicted boxes
# 	else:
# 		st.success('Boxes predicted')
# 		classes = detections["detection_classes"][indexes].astype(np.int64)
# 		scores = detections["detection_scores"][indexes]

# 		# plot boxes and labels on image
# 		image_origi = np.array(Image.fromarray(image_resized).resize((origi_shape[1], origi_shape[0])))
# 		image_origi = plot_boxes_on_img(color_map, classes, bboxes, image_origi, origi_shape)

# 		# show image in web page
# 		st.image(Image.fromarray(image_origi), caption="Image with predictions", width=400)
# 		st.markdown("### Predicted boxes")
# 		for idx in range(len((bboxes))):
# 			st.markdown(f"* Class: {str(category_index[classes[idx]]['name'])}, confidence score: {str(round(scores[idx], 2))}")