drab's picture
Simple debug version
af3661d
raw
history blame
3.77 kB
import json
from typing import Any, Dict, List
import tensorflow as tf
from tensorflow.keras.models import load_model
import base64
import io
import os
import numpy as np
from PIL import Image
# most of this code has been obtained from Datature's prediction script
# https://github.com/datature/resources/blob/main/scripts/bounding_box/prediction.py
# def load_model():
# return tf.saved_model.load('./saved_model')
# model = load_model()
class PreTrainedPipeline():
def __init__(self, path: str):
# load the model
self.model = tf.saved_model.load(os.path.join(path, "saved_model"))
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
# # convert img to numpy array, resize and normalize to make the prediction
# img = np.array(inputs)
# im = tf.image.resize(img, (128, 128))
# im = tf.cast(im, tf.float32) / 255.0
# pred_mask = self.model.predict(im[tf.newaxis, ...])
# # take the best performing class for each pixel
# # the output of argmax looks like this [[1, 2, 0], ...]
# pred_mask_arg = tf.argmax(pred_mask, axis=-1)
# labels = []
# # convert the prediction mask into binary masks for each class
# binary_masks = {}
# mask_codes = {}
# # when we take tf.argmax() over pred_mask, it becomes a tensor object
# # the shape becomes TensorShape object, looking like this TensorShape([128])
# # we need to take get shape, convert to list and take the best one
# rows = pred_mask_arg[0][1].get_shape().as_list()[0]
# cols = pred_mask_arg[0][2].get_shape().as_list()[0]
# for cls in range(pred_mask.shape[-1]):
# binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
# for row in range(rows):
# for col in range(cols):
# if pred_mask_arg[0][row][col] == cls:
# binary_masks[f"mask_{cls}"][row][col] = 1
# else:
# binary_masks[f"mask_{cls}"][row][col] = 0
# mask = binary_masks[f"mask_{cls}"]
# mask *= 255
# img = Image.fromarray(mask.astype(np.int8), mode="L")
# # we need to make it readable for the widget
# with io.BytesIO() as out:
# img.save(out, format="PNG")
# png_string = out.getvalue()
# mask = base64.b64encode(png_string).decode("utf-8")
# mask_codes[f"mask_{cls}"] = mask
# # widget needs the below format, for each class we return label and mask string
# labels.append({
# "label": f"LABEL_{cls}",
# "mask": mask_codes[f"mask_{cls}"],
# "score": 1.0,
# })
# labels = [{"score":0.9509243965148926,"label":"car","box":{"xmin":142,"ymin":106,"xmax":376,"ymax":229}},
# {"score":0.9981777667999268,"label":"car","box":{"xmin":405,"ymin":146,"xmax":640,"ymax":297}},
# {"score":0.9963648915290833,"label":"car","box":{"xmin":0,"ymin":115,"xmax":61,"ymax":167}},
# {"score":0.974663257598877,"label":"car","box":{"xmin":155,"ymin":104,"xmax":290,"ymax":141}},
# {"score":0.9986898303031921,"label":"car","box":{"xmin":39,"ymin":117,"xmax":169,"ymax":188}},
# {"score":0.9998276233673096,"label":"person","box":{"xmin":172,"ymin":60,"xmax":482,"ymax":396}},
# {"score":0.9996274709701538,"label":"skateboard","box":{"xmin":265,"ymin":348,"xmax":440,"ymax":413}}]
labels = []
return labels