Simple debug version
Browse files- pipeline.py +8 -8
pipeline.py
CHANGED
@@ -21,7 +21,7 @@ class PreTrainedPipeline():
|
|
21 |
# load the model
|
22 |
self.model = tf.saved_model.load(os.path.join(path, "saved_model"))
|
23 |
|
24 |
-
|
25 |
|
26 |
# # convert img to numpy array, resize and normalize to make the prediction
|
27 |
# img = np.array(inputs)
|
@@ -81,12 +81,12 @@ class PreTrainedPipeline():
|
|
81 |
# "score": 1.0,
|
82 |
# })
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
# return labels
|
|
|
21 |
# load the model
|
22 |
self.model = tf.saved_model.load(os.path.join(path, "saved_model"))
|
23 |
|
24 |
+
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
|
25 |
|
26 |
# # convert img to numpy array, resize and normalize to make the prediction
|
27 |
# img = np.array(inputs)
|
|
|
81 |
# "score": 1.0,
|
82 |
# })
|
83 |
|
84 |
+
labels = [{"score":0.9509243965148926,"label":"car","box":{"xmin":142,"ymin":106,"xmax":376,"ymax":229}},
|
85 |
+
{"score":0.9981777667999268,"label":"car","box":{"xmin":405,"ymin":146,"xmax":640,"ymax":297}},
|
86 |
+
{"score":0.9963648915290833,"label":"car","box":{"xmin":0,"ymin":115,"xmax":61,"ymax":167}},
|
87 |
+
{"score":0.974663257598877,"label":"car","box":{"xmin":155,"ymin":104,"xmax":290,"ymax":141}},
|
88 |
+
{"score":0.9986898303031921,"label":"car","box":{"xmin":39,"ymin":117,"xmax":169,"ymax":188}},
|
89 |
+
{"score":0.9998276233673096,"label":"person","box":{"xmin":172,"ymin":60,"xmax":482,"ymax":396}},
|
90 |
+
{"score":0.9996274709701538,"label":"skateboard","box":{"xmin":265,"ymin":348,"xmax":440,"ymax":413}}]
|
91 |
|
92 |
# return labels
|