File size: 1,959 Bytes
09e18b1
 
 
 
 
37b3478
09e18b1
 
 
 
 
78e0d8f
09e18b1
 
 
 
 
 
 
 
 
 
 
 
 
 
78e0d8f
09e18b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78e0d8f
09e18b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# ############################################################################
# Model: ECAPA-TDNN for Audio Classification
# ############################################################################

# Pretrain folder (HuggingFace)
pretrained_path: dragonSwing/audify

# Feature parameters
n_mels: 80

# Output parameters
out_n_neurons: 5 # Possible languages in the dataset

# Model params
compute_features: !new:speechbrain.lobes.features.Fbank
  n_mels: !ref <n_mels>

mean_var_norm: !new:speechbrain.processing.features.InputNormalization
  norm_type: sentence
  std_norm: False

# Embedding Model
CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
  input_shape: (null, null, 80)
  num_blocks: 3
  num_layers_per_block: 1
  out_channels: (128, 256, 256)
  kernel_sizes: (3, 3, 1)
  strides: (2, 2, 1)
  residuals: (False, False, False)
  conv_module: !name:speechbrain.nnet.CNN.Conv1d
  norm: !name:speechbrain.nnet.normalization.BatchNorm1d

pooling: !new:speechbrain.nnet.pooling.AdaptivePool
  output_size: 1

embedding: !new:torch.nn.ModuleList
  - [!ref <CNN>, !ref <pooling>]

embedding_model: !new:speechbrain.nnet.containers.LengthsCapableSequential
  CNN: !ref <CNN>
  pooling: !ref <pooling>

classifier: !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
  input_size: 256
  out_neurons: !ref <out_n_neurons>

modules:
  compute_features: !ref <compute_features>
  mean_var_norm: !ref <mean_var_norm>
  embedding_model: !ref <embedding_model>
  classifier: !ref <classifier>

label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder

pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
  loadables:
    embedding_model: !ref <embedding>
    classifier: !ref <classifier>
    label_encoder: !ref <label_encoder>
  paths:
    embedding_model: !ref <pretrained_path>/embedding_model.ckpt
    classifier: !ref <pretrained_path>/classifier.ckpt
    label_encoder: !ref <pretrained_path>/label_encoder.txt