Refined v4
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.92 +/- 0.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00df93c980077dea643e96c66b8df2a858bb1b247ab99fb604d0433c7b2ac6e5
|
3 |
+
size 108073
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ba0a0238160>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ba104641280>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1690340205138332337,
|
28 |
+
"learning_rate": 0.0003,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAotbHPg16zbvj0Aw/otbHPg16zbvj0Aw/otbHPg16zbvj0Aw/otbHPg16zbvj0Aw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+zi7PrdFRD44LUg/LXvKv89KxT/dblU/ide9v952oL/4Mnq/YzzYP18QMz/Whs2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACi1sc+DXrNu+PQDD+j+0I7ggRnuuaaSzyi1sc+DXrNu+PQDD+j+0I7ggRnuuaaSzyi1sc+DXrNu+PQDD+j+0I7ggRnuuaaSzyi1sc+DXrNu+PQDD+j+0I7ggRnuuaaSzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.3903094 -0.00627065 0.55006236]\n [ 0.3903094 -0.00627065 0.55006236]\n [ 0.3903094 -0.00627065 0.55006236]\n [ 0.3903094 -0.00627065 0.55006236]]",
|
38 |
+
"desired_goal": "[[ 0.3656691 0.19167219 0.78194 ]\n [-1.581884 1.5413455 0.8337229 ]\n [-1.4831401 -1.2536275 -0.9773402 ]\n [ 1.6893429 0.69946855 -1.6056774 ]]",
|
39 |
+
"observation": "[[ 0.3903094 -0.00627065 0.55006236 0.0029752 -0.00088126 0.01242707]\n [ 0.3903094 -0.00627065 0.55006236 0.0029752 -0.00088126 0.01242707]\n [ 0.3903094 -0.00627065 0.55006236 0.0029752 -0.00088126 0.01242707]\n [ 0.3903094 -0.00627065 0.55006236 0.0029752 -0.00088126 0.01242707]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHwRtPfmSaz2oi5w8bwiUvfvNjD1gVzc7kWIYPqSETD3yrIU+h2+IvQD7eLxJ0AA8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.05786526 0.05751321 0.01910956]\n [-0.07228171 0.06875225 0.00279757]\n [ 0.1488135 0.04993118 0.2610851 ]\n [-0.06661897 -0.01519656 0.00786216]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy9jQzf6A9L+UhpRSlIwBbJRLMowBdJRHQKYY6FGG21F1fZQoaAZoCWgPQwiOA6+WOzPpv5SGlFKUaBVLMmgWR0CmGKu/L1VYdX2UKGgGaAloD0MIakyIuaRq7r+UhpRSlGgVSzJoFkdAphhn6ZYxL3V9lChoBmgJaA9DCC7HKxA9Keu/lIaUUpRoFUsyaBZHQKYYD0J4SpR1fZQoaAZoCWgPQwgUX+0ozlHsv5SGlFKUaBVLMmgWR0CmGgb70nPWdX2UKGgGaAloD0MIasL2kzE+7L+UhpRSlGgVSzJoFkdAphnKMaS9unV9lChoBmgJaA9DCDnSGRh52fy/lIaUUpRoFUsyaBZHQKYZho+wC8x1fZQoaAZoCWgPQwhNnx1wXbHvv5SGlFKUaBVLMmgWR0CmGS48uBczdX2UKGgGaAloD0MI+aBns+rz5r+UhpRSlGgVSzJoFkdAphsouM+/xnV9lChoBmgJaA9DCGOYE7TJ4fe/lIaUUpRoFUsyaBZHQKYa6/Yao/B1fZQoaAZoCWgPQwg7xapBmNvrv5SGlFKUaBVLMmgWR0CmGqgs052hdX2UKGgGaAloD0MI/gxv1uB947+UhpRSlGgVSzJoFkdAphpPqkdmx3V9lChoBmgJaA9DCL4W9N4YguO/lIaUUpRoFUsyaBZHQKYcOX8fmtB1fZQoaAZoCWgPQwjUZMbbSi/pv5SGlFKUaBVLMmgWR0CmG/z3Zf2LdX2UKGgGaAloD0MIyXGndLC+9L+UhpRSlGgVSzJoFkdAphu5iobXH3V9lChoBmgJaA9DCGDkZU0ssPO/lIaUUpRoFUsyaBZHQKYbYTV2A5J1fZQoaAZoCWgPQwjVJHhDGpX0v5SGlFKUaBVLMmgWR0CmHUO89Oh1dX2UKGgGaAloD0MI3IKluoAX8r+UhpRSlGgVSzJoFkdAph0HKSxJNHV9lChoBmgJaA9DCBUcXhCRmtq/lIaUUpRoFUsyaBZHQKYcw593KSx1fZQoaAZoCWgPQwiS6ju/KEHov5SGlFKUaBVLMmgWR0CmHGunl4kedX2UKGgGaAloD0MIl4+kpIfh8L+UhpRSlGgVSzJoFkdAph5KWqtHQXV9lChoBmgJaA9DCNf5t8t+XfC/lIaUUpRoFUsyaBZHQKYeDbN8ma91fZQoaAZoCWgPQwiYolwav3Dvv5SGlFKUaBVLMmgWR0CmHcngP3BYdX2UKGgGaAloD0MIsHQ+PEsQ6b+UhpRSlGgVSzJoFkdAph1xUPxx1nV9lChoBmgJaA9DCEbPLXQlAu2/lIaUUpRoFUsyaBZHQKYfLLcsUZh1fZQoaAZoCWgPQwj5nSYz3lbkv5SGlFKUaBVLMmgWR0CmHvACOmzjdX2UKGgGaAloD0MIpaDbSxoj57+UhpRSlGgVSzJoFkdAph6sI9kjHHV9lChoBmgJaA9DCMyYgjXOJvG/lIaUUpRoFUsyaBZHQKYeU2WpqAV1fZQoaAZoCWgPQwiKHvgYrLjrv5SGlFKUaBVLMmgWR0CmICszEaVEdX2UKGgGaAloD0MIkC+hgsML6r+UhpRSlGgVSzJoFkdAph/us1baAXV9lChoBmgJaA9DCKsjRzoDo/O/lIaUUpRoFUsyaBZHQKYfq1yeZoh1fZQoaAZoCWgPQwg6WP/nMN/rv5SGlFKUaBVLMmgWR0CmH1Lj5sTGdX2UKGgGaAloD0MIQwBw7Nlz8L+UhpRSlGgVSzJoFkdApiExokAxSHV9lChoBmgJaA9DCFJHx9XILum/lIaUUpRoFUsyaBZHQKYg9QN0/4Z1fZQoaAZoCWgPQwhHWipvR7jtv5SGlFKUaBVLMmgWR0CmILF0xM37dX2UKGgGaAloD0MIqG4u/ran8r+UhpRSlGgVSzJoFkdApiBZD7ZWaXV9lChoBmgJaA9DCOm12ViJeeW/lIaUUpRoFUsyaBZHQKYiYxbB42V1fZQoaAZoCWgPQwiyZ89lalLxv5SGlFKUaBVLMmgWR0CmIiZ88cMmdX2UKGgGaAloD0MIGZC93v1x9r+UhpRSlGgVSzJoFkdApiHir5qM33V9lChoBmgJaA9DCCXmWUkrPuu/lIaUUpRoFUsyaBZHQKYhiv5gw491fZQoaAZoCWgPQwjwv5Xs2Ij4v5SGlFKUaBVLMmgWR0CmI36F23a0dX2UKGgGaAloD0MIIqmFkskp6L+UhpRSlGgVSzJoFkdApiNB8c+7lXV9lChoBmgJaA9DCJ612y401+2/lIaUUpRoFUsyaBZHQKYi/k5p8F91fZQoaAZoCWgPQwh9emzLgHPxv5SGlFKUaBVLMmgWR0CmIqXNTtLMdX2UKGgGaAloD0MI275H/fWK6r+UhpRSlGgVSzJoFkdApiTNwo9cKXV9lChoBmgJaA9DCBx5ILJIU/K/lIaUUpRoFUsyaBZHQKYkkXgLqlh1fZQoaAZoCWgPQwh7T+W0p2Tzv5SGlFKUaBVLMmgWR0CmJE58KG+LdX2UKGgGaAloD0MIpaFGIcls8L+UhpRSlGgVSzJoFkdApiP3/R3NcHV9lChoBmgJaA9DCCVYHM786vK/lIaUUpRoFUsyaBZHQKYmszTF2mp1fZQoaAZoCWgPQwhlcmpnmNrsv5SGlFKUaBVLMmgWR0CmJnePBBRidX2UKGgGaAloD0MI8x5nmrD97L+UhpRSlGgVSzJoFkdApiY2IbfgrHV9lChoBmgJaA9DCNofKLfte/G/lIaUUpRoFUsyaBZHQKYl3hAGB4F1fZQoaAZoCWgPQwhhGoaPiGn5v5SGlFKUaBVLMmgWR0CmKGOjASFodX2UKGgGaAloD0MIswsG19yR9b+UhpRSlGgVSzJoFkdApignzreImHV9lChoBmgJaA9DCKBQTx+Bf/C/lIaUUpRoFUsyaBZHQKYn5PZ7HAB1fZQoaAZoCWgPQwghBU8hV+rkv5SGlFKUaBVLMmgWR0CmJ41Pva11dX2UKGgGaAloD0MI3lhQGJSp9L+UhpRSlGgVSzJoFkdApiotbu+h5HV9lChoBmgJaA9DCK4QVmMJa/6/lIaUUpRoFUsyaBZHQKYp8mvW6LB1fZQoaAZoCWgPQwgGnRA66JL2v5SGlFKUaBVLMmgWR0CmKa8neBQOdX2UKGgGaAloD0MIX38SnzuB8b+UhpRSlGgVSzJoFkdApilXS0BwM3V9lChoBmgJaA9DCK1rtBzoIeG/lIaUUpRoFUsyaBZHQKYrwnNxEOR1fZQoaAZoCWgPQwgExvoGJjfev5SGlFKUaBVLMmgWR0CmK4XdCVrzdX2UKGgGaAloD0MIWBzO/GoO7b+UhpRSlGgVSzJoFkdApitCVbA1vXV9lChoBmgJaA9DCKWHodXJmei/lIaUUpRoFUsyaBZHQKYq6ZH/cWV1fZQoaAZoCWgPQwhPPdLgtrbpv5SGlFKUaBVLMmgWR0CmLL+5WilBdX2UKGgGaAloD0MIvoV1492R6L+UhpRSlGgVSzJoFkdApiyC/9Hc13V9lChoBmgJaA9DCIS9iSE5Geu/lIaUUpRoFUsyaBZHQKYsPwz+FUR1fZQoaAZoCWgPQwjy0k1iEFjjv5SGlFKUaBVLMmgWR0CmK+bnxJ/YdX2UKGgGaAloD0MIPZrqyfxj8b+UhpRSlGgVSzJoFkdApi3dr0rbxnV9lChoBmgJaA9DCBa/KaxUUOq/lIaUUpRoFUsyaBZHQKYtoSRr8BN1fZQoaAZoCWgPQwhGX0Gasaj0v5SGlFKUaBVLMmgWR0CmLV2qDK5kdX2UKGgGaAloD0MImKHxRBDn4L+UhpRSlGgVSzJoFkdApi0Fd1MdtHV9lChoBmgJaA9DCGPVIMztHvK/lIaUUpRoFUsyaBZHQKYu61PWQOp1fZQoaAZoCWgPQwi3XWiu00jrv5SGlFKUaBVLMmgWR0CmLq7Ddgv2dX2UKGgGaAloD0MInwWhvI+j8L+UhpRSlGgVSzJoFkdApi5q3G4qgHV9lChoBmgJaA9DCPP/qiNH+vG/lIaUUpRoFUsyaBZHQKYuEnm7rcF1fZQoaAZoCWgPQwgGLo81I4P7v5SGlFKUaBVLMmgWR0CmMBwzDXOGdX2UKGgGaAloD0MIi8VvCivV8L+UhpRSlGgVSzJoFkdApi/fldTo+3V9lChoBmgJaA9DCPLR4oxhTu+/lIaUUpRoFUsyaBZHQKYvnBP9DQZ1fZQoaAZoCWgPQwiD91W5UPnnv5SGlFKUaBVLMmgWR0CmL0Q4CIUKdX2UKGgGaAloD0MIUKbR5GIM4r+UhpRSlGgVSzJoFkdApjE32ZiNKnV9lChoBmgJaA9DCFmIDoEjgeW/lIaUUpRoFUsyaBZHQKYw+3F1jiJ1fZQoaAZoCWgPQwi71Aj9TP3wv5SGlFKUaBVLMmgWR0CmMLgPuogndX2UKGgGaAloD0MIhuKON/mt8L+UhpRSlGgVSzJoFkdApjBf114gR3V9lChoBmgJaA9DCJKvBFJiF/C/lIaUUpRoFUsyaBZHQKYyPBAv+Ox1fZQoaAZoCWgPQwjmyTUFMnv2v5SGlFKUaBVLMmgWR0CmMf+p4rz5dX2UKGgGaAloD0MIxciSOZZ39r+UhpRSlGgVSzJoFkdApjG76WPcSHV9lChoBmgJaA9DCG+Cb5o+e/e/lIaUUpRoFUsyaBZHQKYxY48U21l1fZQoaAZoCWgPQwjd0JSdflDrv5SGlFKUaBVLMmgWR0CmMzT4UN8WdX2UKGgGaAloD0MIr7FLVG+N67+UhpRSlGgVSzJoFkdApjL4KSgXdnV9lChoBmgJaA9DCPnzbcFS3e2/lIaUUpRoFUsyaBZHQKYytFZPl+51fZQoaAZoCWgPQwg978aCwuD7v5SGlFKUaBVLMmgWR0CmMlwAEMb4dX2UKGgGaAloD0MItVNzucFQ5b+UhpRSlGgVSzJoFkdApjQwOlO45XV9lChoBmgJaA9DCKuwGeCCrPO/lIaUUpRoFUsyaBZHQKYz89SMtK91fZQoaAZoCWgPQwjKF7SQgFHwv5SGlFKUaBVLMmgWR0CmM7CRW912dX2UKGgGaAloD0MIF9nO91Pj87+UhpRSlGgVSzJoFkdApjNYIldC3XV9lChoBmgJaA9DCDp5kQn4te+/lIaUUpRoFUsyaBZHQKY1OHGjsUt1fZQoaAZoCWgPQwjg2R694T7uv5SGlFKUaBVLMmgWR0CmNPvQnhKldX2UKGgGaAloD0MIsOQqFr9p9L+UhpRSlGgVSzJoFkdApjS4PEsJ6nV9lChoBmgJaA9DCG1YU1kU9ua/lIaUUpRoFUsyaBZHQKY0X6Q/5cl1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a20833fb3e16b19e1ea6a53cee879f4ea741871d32b5214ea9e422195ba80989
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af1afd24e3649edc0275099bcd87b03ef314a27ef60a692929726d57b5706702
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ba0a0238160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ba104641280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690340205138332337, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAotbHPg16zbvj0Aw/otbHPg16zbvj0Aw/otbHPg16zbvj0Aw/otbHPg16zbvj0Aw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+zi7PrdFRD44LUg/LXvKv89KxT/dblU/ide9v952oL/4Mnq/YzzYP18QMz/Whs2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACi1sc+DXrNu+PQDD+j+0I7ggRnuuaaSzyi1sc+DXrNu+PQDD+j+0I7ggRnuuaaSzyi1sc+DXrNu+PQDD+j+0I7ggRnuuaaSzyi1sc+DXrNu+PQDD+j+0I7ggRnuuaaSzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3903094 -0.00627065 0.55006236]\n [ 0.3903094 -0.00627065 0.55006236]\n [ 0.3903094 -0.00627065 0.55006236]\n [ 0.3903094 -0.00627065 0.55006236]]", "desired_goal": "[[ 0.3656691 0.19167219 0.78194 ]\n [-1.581884 1.5413455 0.8337229 ]\n [-1.4831401 -1.2536275 -0.9773402 ]\n [ 1.6893429 0.69946855 -1.6056774 ]]", "observation": "[[ 0.3903094 -0.00627065 0.55006236 0.0029752 -0.00088126 0.01242707]\n [ 0.3903094 -0.00627065 0.55006236 0.0029752 -0.00088126 0.01242707]\n [ 0.3903094 -0.00627065 0.55006236 0.0029752 -0.00088126 0.01242707]\n [ 0.3903094 -0.00627065 0.55006236 0.0029752 -0.00088126 0.01242707]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHwRtPfmSaz2oi5w8bwiUvfvNjD1gVzc7kWIYPqSETD3yrIU+h2+IvQD7eLxJ0AA8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05786526 0.05751321 0.01910956]\n [-0.07228171 0.06875225 0.00279757]\n [ 0.1488135 0.04993118 0.2610851 ]\n [-0.06661897 -0.01519656 0.00786216]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy9jQzf6A9L+UhpRSlIwBbJRLMowBdJRHQKYY6FGG21F1fZQoaAZoCWgPQwiOA6+WOzPpv5SGlFKUaBVLMmgWR0CmGKu/L1VYdX2UKGgGaAloD0MIakyIuaRq7r+UhpRSlGgVSzJoFkdAphhn6ZYxL3V9lChoBmgJaA9DCC7HKxA9Keu/lIaUUpRoFUsyaBZHQKYYD0J4SpR1fZQoaAZoCWgPQwgUX+0ozlHsv5SGlFKUaBVLMmgWR0CmGgb70nPWdX2UKGgGaAloD0MIasL2kzE+7L+UhpRSlGgVSzJoFkdAphnKMaS9unV9lChoBmgJaA9DCDnSGRh52fy/lIaUUpRoFUsyaBZHQKYZho+wC8x1fZQoaAZoCWgPQwhNnx1wXbHvv5SGlFKUaBVLMmgWR0CmGS48uBczdX2UKGgGaAloD0MI+aBns+rz5r+UhpRSlGgVSzJoFkdAphsouM+/xnV9lChoBmgJaA9DCGOYE7TJ4fe/lIaUUpRoFUsyaBZHQKYa6/Yao/B1fZQoaAZoCWgPQwg7xapBmNvrv5SGlFKUaBVLMmgWR0CmGqgs052hdX2UKGgGaAloD0MI/gxv1uB947+UhpRSlGgVSzJoFkdAphpPqkdmx3V9lChoBmgJaA9DCL4W9N4YguO/lIaUUpRoFUsyaBZHQKYcOX8fmtB1fZQoaAZoCWgPQwjUZMbbSi/pv5SGlFKUaBVLMmgWR0CmG/z3Zf2LdX2UKGgGaAloD0MIyXGndLC+9L+UhpRSlGgVSzJoFkdAphu5iobXH3V9lChoBmgJaA9DCGDkZU0ssPO/lIaUUpRoFUsyaBZHQKYbYTV2A5J1fZQoaAZoCWgPQwjVJHhDGpX0v5SGlFKUaBVLMmgWR0CmHUO89Oh1dX2UKGgGaAloD0MI3IKluoAX8r+UhpRSlGgVSzJoFkdAph0HKSxJNHV9lChoBmgJaA9DCBUcXhCRmtq/lIaUUpRoFUsyaBZHQKYcw593KSx1fZQoaAZoCWgPQwiS6ju/KEHov5SGlFKUaBVLMmgWR0CmHGunl4kedX2UKGgGaAloD0MIl4+kpIfh8L+UhpRSlGgVSzJoFkdAph5KWqtHQXV9lChoBmgJaA9DCNf5t8t+XfC/lIaUUpRoFUsyaBZHQKYeDbN8ma91fZQoaAZoCWgPQwiYolwav3Dvv5SGlFKUaBVLMmgWR0CmHcngP3BYdX2UKGgGaAloD0MIsHQ+PEsQ6b+UhpRSlGgVSzJoFkdAph1xUPxx1nV9lChoBmgJaA9DCEbPLXQlAu2/lIaUUpRoFUsyaBZHQKYfLLcsUZh1fZQoaAZoCWgPQwj5nSYz3lbkv5SGlFKUaBVLMmgWR0CmHvACOmzjdX2UKGgGaAloD0MIpaDbSxoj57+UhpRSlGgVSzJoFkdAph6sI9kjHHV9lChoBmgJaA9DCMyYgjXOJvG/lIaUUpRoFUsyaBZHQKYeU2WpqAV1fZQoaAZoCWgPQwiKHvgYrLjrv5SGlFKUaBVLMmgWR0CmICszEaVEdX2UKGgGaAloD0MIkC+hgsML6r+UhpRSlGgVSzJoFkdAph/us1baAXV9lChoBmgJaA9DCKsjRzoDo/O/lIaUUpRoFUsyaBZHQKYfq1yeZoh1fZQoaAZoCWgPQwg6WP/nMN/rv5SGlFKUaBVLMmgWR0CmH1Lj5sTGdX2UKGgGaAloD0MIQwBw7Nlz8L+UhpRSlGgVSzJoFkdApiExokAxSHV9lChoBmgJaA9DCFJHx9XILum/lIaUUpRoFUsyaBZHQKYg9QN0/4Z1fZQoaAZoCWgPQwhHWipvR7jtv5SGlFKUaBVLMmgWR0CmILF0xM37dX2UKGgGaAloD0MIqG4u/ran8r+UhpRSlGgVSzJoFkdApiBZD7ZWaXV9lChoBmgJaA9DCOm12ViJeeW/lIaUUpRoFUsyaBZHQKYiYxbB42V1fZQoaAZoCWgPQwiyZ89lalLxv5SGlFKUaBVLMmgWR0CmIiZ88cMmdX2UKGgGaAloD0MIGZC93v1x9r+UhpRSlGgVSzJoFkdApiHir5qM33V9lChoBmgJaA9DCCXmWUkrPuu/lIaUUpRoFUsyaBZHQKYhiv5gw491fZQoaAZoCWgPQwjwv5Xs2Ij4v5SGlFKUaBVLMmgWR0CmI36F23a0dX2UKGgGaAloD0MIIqmFkskp6L+UhpRSlGgVSzJoFkdApiNB8c+7lXV9lChoBmgJaA9DCJ612y401+2/lIaUUpRoFUsyaBZHQKYi/k5p8F91fZQoaAZoCWgPQwh9emzLgHPxv5SGlFKUaBVLMmgWR0CmIqXNTtLMdX2UKGgGaAloD0MI275H/fWK6r+UhpRSlGgVSzJoFkdApiTNwo9cKXV9lChoBmgJaA9DCBx5ILJIU/K/lIaUUpRoFUsyaBZHQKYkkXgLqlh1fZQoaAZoCWgPQwh7T+W0p2Tzv5SGlFKUaBVLMmgWR0CmJE58KG+LdX2UKGgGaAloD0MIpaFGIcls8L+UhpRSlGgVSzJoFkdApiP3/R3NcHV9lChoBmgJaA9DCCVYHM786vK/lIaUUpRoFUsyaBZHQKYmszTF2mp1fZQoaAZoCWgPQwhlcmpnmNrsv5SGlFKUaBVLMmgWR0CmJnePBBRidX2UKGgGaAloD0MI8x5nmrD97L+UhpRSlGgVSzJoFkdApiY2IbfgrHV9lChoBmgJaA9DCNofKLfte/G/lIaUUpRoFUsyaBZHQKYl3hAGB4F1fZQoaAZoCWgPQwhhGoaPiGn5v5SGlFKUaBVLMmgWR0CmKGOjASFodX2UKGgGaAloD0MIswsG19yR9b+UhpRSlGgVSzJoFkdApignzreImHV9lChoBmgJaA9DCKBQTx+Bf/C/lIaUUpRoFUsyaBZHQKYn5PZ7HAB1fZQoaAZoCWgPQwghBU8hV+rkv5SGlFKUaBVLMmgWR0CmJ41Pva11dX2UKGgGaAloD0MI3lhQGJSp9L+UhpRSlGgVSzJoFkdApiotbu+h5HV9lChoBmgJaA9DCK4QVmMJa/6/lIaUUpRoFUsyaBZHQKYp8mvW6LB1fZQoaAZoCWgPQwgGnRA66JL2v5SGlFKUaBVLMmgWR0CmKa8neBQOdX2UKGgGaAloD0MIX38SnzuB8b+UhpRSlGgVSzJoFkdApilXS0BwM3V9lChoBmgJaA9DCK1rtBzoIeG/lIaUUpRoFUsyaBZHQKYrwnNxEOR1fZQoaAZoCWgPQwgExvoGJjfev5SGlFKUaBVLMmgWR0CmK4XdCVrzdX2UKGgGaAloD0MIWBzO/GoO7b+UhpRSlGgVSzJoFkdApitCVbA1vXV9lChoBmgJaA9DCKWHodXJmei/lIaUUpRoFUsyaBZHQKYq6ZH/cWV1fZQoaAZoCWgPQwhPPdLgtrbpv5SGlFKUaBVLMmgWR0CmLL+5WilBdX2UKGgGaAloD0MIvoV1492R6L+UhpRSlGgVSzJoFkdApiyC/9Hc13V9lChoBmgJaA9DCIS9iSE5Geu/lIaUUpRoFUsyaBZHQKYsPwz+FUR1fZQoaAZoCWgPQwjy0k1iEFjjv5SGlFKUaBVLMmgWR0CmK+bnxJ/YdX2UKGgGaAloD0MIPZrqyfxj8b+UhpRSlGgVSzJoFkdApi3dr0rbxnV9lChoBmgJaA9DCBa/KaxUUOq/lIaUUpRoFUsyaBZHQKYtoSRr8BN1fZQoaAZoCWgPQwhGX0Gasaj0v5SGlFKUaBVLMmgWR0CmLV2qDK5kdX2UKGgGaAloD0MImKHxRBDn4L+UhpRSlGgVSzJoFkdApi0Fd1MdtHV9lChoBmgJaA9DCGPVIMztHvK/lIaUUpRoFUsyaBZHQKYu61PWQOp1fZQoaAZoCWgPQwi3XWiu00jrv5SGlFKUaBVLMmgWR0CmLq7Ddgv2dX2UKGgGaAloD0MInwWhvI+j8L+UhpRSlGgVSzJoFkdApi5q3G4qgHV9lChoBmgJaA9DCPP/qiNH+vG/lIaUUpRoFUsyaBZHQKYuEnm7rcF1fZQoaAZoCWgPQwgGLo81I4P7v5SGlFKUaBVLMmgWR0CmMBwzDXOGdX2UKGgGaAloD0MIi8VvCivV8L+UhpRSlGgVSzJoFkdApi/fldTo+3V9lChoBmgJaA9DCPLR4oxhTu+/lIaUUpRoFUsyaBZHQKYvnBP9DQZ1fZQoaAZoCWgPQwiD91W5UPnnv5SGlFKUaBVLMmgWR0CmL0Q4CIUKdX2UKGgGaAloD0MIUKbR5GIM4r+UhpRSlGgVSzJoFkdApjE32ZiNKnV9lChoBmgJaA9DCFmIDoEjgeW/lIaUUpRoFUsyaBZHQKYw+3F1jiJ1fZQoaAZoCWgPQwi71Aj9TP3wv5SGlFKUaBVLMmgWR0CmMLgPuogndX2UKGgGaAloD0MIhuKON/mt8L+UhpRSlGgVSzJoFkdApjBf114gR3V9lChoBmgJaA9DCJKvBFJiF/C/lIaUUpRoFUsyaBZHQKYyPBAv+Ox1fZQoaAZoCWgPQwjmyTUFMnv2v5SGlFKUaBVLMmgWR0CmMf+p4rz5dX2UKGgGaAloD0MIxciSOZZ39r+UhpRSlGgVSzJoFkdApjG76WPcSHV9lChoBmgJaA9DCG+Cb5o+e/e/lIaUUpRoFUsyaBZHQKYxY48U21l1fZQoaAZoCWgPQwjd0JSdflDrv5SGlFKUaBVLMmgWR0CmMzT4UN8WdX2UKGgGaAloD0MIr7FLVG+N67+UhpRSlGgVSzJoFkdApjL4KSgXdnV9lChoBmgJaA9DCPnzbcFS3e2/lIaUUpRoFUsyaBZHQKYytFZPl+51fZQoaAZoCWgPQwg978aCwuD7v5SGlFKUaBVLMmgWR0CmMlwAEMb4dX2UKGgGaAloD0MItVNzucFQ5b+UhpRSlGgVSzJoFkdApjQwOlO45XV9lChoBmgJaA9DCKuwGeCCrPO/lIaUUpRoFUsyaBZHQKYz89SMtK91fZQoaAZoCWgPQwjKF7SQgFHwv5SGlFKUaBVLMmgWR0CmM7CRW912dX2UKGgGaAloD0MIF9nO91Pj87+UhpRSlGgVSzJoFkdApjNYIldC3XV9lChoBmgJaA9DCDp5kQn4te+/lIaUUpRoFUsyaBZHQKY1OHGjsUt1fZQoaAZoCWgPQwjg2R694T7uv5SGlFKUaBVLMmgWR0CmNPvQnhKldX2UKGgGaAloD0MIsOQqFr9p9L+UhpRSlGgVSzJoFkdApjS4PEsJ6nV9lChoBmgJaA9DCG1YU1kU9ua/lIaUUpRoFUsyaBZHQKY0X6Q/5cl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (366 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.9216920701786876, "std_reward": 0.19330554300093153, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-26T03:44:10.806655"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a316ce89125505e902c2ca9b93ee304203bc31ff4bce937e6d8ae9ccfa871d39
|
3 |
+
size 2387
|