--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-ner-conll2003 results: [] --- # distilbert-ner-conll2003 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0131 - Accuracy: 0.9965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0825 | 1.0 | 878 | 0.0111 | 0.9968 | | 0.0075 | 2.0 | 1756 | 0.0092 | 0.9973 | | 0.0041 | 3.0 | 2634 | 0.0093 | 0.9975 | | 0.0027 | 4.0 | 3512 | 0.0097 | 0.9975 | | 0.0021 | 5.0 | 4390 | 0.0099 | 0.9975 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3