dsakerkwq commited on
Commit
9b63ce7
1 Parent(s): 64d1837

End of training

Browse files
Files changed (2) hide show
  1. README.md +175 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Korabbit/llama-2-ko-7b
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 9d14bd20-fd9f-4e8e-b29e-c502d03c3a8f
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: Korabbit/llama-2-ko-7b
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 4
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - b0512b13b740011c_train_data.json
30
+ ds_type: json
31
+ format: custom
32
+ num_proc: 4
33
+ path: /workspace/input_data/b0512b13b740011c_train_data.json
34
+ streaming: true
35
+ type:
36
+ field_instruction: tweet
37
+ field_output: sentiment
38
+ format: '{instruction}'
39
+ no_input_format: '{instruction}'
40
+ system_format: '{system}'
41
+ system_prompt: ''
42
+ debug: null
43
+ deepspeed: null
44
+ device_map: balanced
45
+ do_eval: true
46
+ early_stopping_patience: 1
47
+ eval_batch_size: 1
48
+ eval_sample_packing: false
49
+ eval_steps: 25
50
+ evaluation_strategy: steps
51
+ flash_attention: false
52
+ fp16: null
53
+ fsdp: null
54
+ fsdp_config: null
55
+ gradient_accumulation_steps: 16
56
+ gradient_checkpointing: true
57
+ group_by_length: true
58
+ hub_model_id: dsakerkwq/9d14bd20-fd9f-4e8e-b29e-c502d03c3a8f
59
+ hub_strategy: checkpoint
60
+ hub_token: null
61
+ learning_rate: 0.0001
62
+ load_in_4bit: false
63
+ load_in_8bit: false
64
+ local_rank: null
65
+ logging_steps: 1
66
+ lora_alpha: 64
67
+ lora_dropout: 0.05
68
+ lora_fan_in_fan_out: null
69
+ lora_model_dir: null
70
+ lora_r: 32
71
+ lora_target_linear: true
72
+ lora_target_modules:
73
+ - q_proj
74
+ - v_proj
75
+ lr_scheduler: cosine
76
+ max_grad_norm: 1.0
77
+ max_memory:
78
+ 0: 75GB
79
+ 1: 75GB
80
+ 2: 75GB
81
+ 3: 75GB
82
+ max_steps: 50
83
+ micro_batch_size: 2
84
+ mixed_precision: bf16
85
+ mlflow_experiment_name: /tmp/b0512b13b740011c_train_data.json
86
+ model_type: AutoModelForCausalLM
87
+ num_epochs: 3
88
+ optim_args:
89
+ adam_beta1: 0.9
90
+ adam_beta2: 0.95
91
+ adam_epsilon: 1e-5
92
+ optimizer: adamw_torch
93
+ output_dir: miner_id_24
94
+ pad_to_sequence_len: true
95
+ resume_from_checkpoint: null
96
+ s2_attention: null
97
+ sample_packing: false
98
+ save_steps: 25
99
+ save_strategy: steps
100
+ sequence_len: 2048
101
+ special_tokens:
102
+ pad_token: </s>
103
+ strict: false
104
+ tf32: false
105
+ tokenizer_type: AutoTokenizer
106
+ torch_compile: false
107
+ train_on_inputs: false
108
+ trust_remote_code: true
109
+ val_set_size: 50
110
+ wandb_entity: null
111
+ wandb_mode: online
112
+ wandb_name: 9d14bd20-fd9f-4e8e-b29e-c502d03c3a8f
113
+ wandb_project: Public_TuningSN
114
+ wandb_runid: 9d14bd20-fd9f-4e8e-b29e-c502d03c3a8f
115
+ warmup_ratio: 0.04
116
+ weight_decay: 0.01
117
+ xformers_attention: null
118
+
119
+ ```
120
+
121
+ </details><br>
122
+
123
+ # 9d14bd20-fd9f-4e8e-b29e-c502d03c3a8f
124
+
125
+ This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset.
126
+ It achieves the following results on the evaluation set:
127
+ - Loss: 0.2501
128
+
129
+ ## Model description
130
+
131
+ More information needed
132
+
133
+ ## Intended uses & limitations
134
+
135
+ More information needed
136
+
137
+ ## Training and evaluation data
138
+
139
+ More information needed
140
+
141
+ ## Training procedure
142
+
143
+ ### Training hyperparameters
144
+
145
+ The following hyperparameters were used during training:
146
+ - learning_rate: 0.0001
147
+ - train_batch_size: 2
148
+ - eval_batch_size: 1
149
+ - seed: 42
150
+ - distributed_type: multi-GPU
151
+ - num_devices: 4
152
+ - gradient_accumulation_steps: 16
153
+ - total_train_batch_size: 128
154
+ - total_eval_batch_size: 4
155
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
156
+ - lr_scheduler_type: cosine
157
+ - lr_scheduler_warmup_steps: 2
158
+ - training_steps: 50
159
+
160
+ ### Training results
161
+
162
+ | Training Loss | Epoch | Step | Validation Loss |
163
+ |:-------------:|:------:|:----:|:---------------:|
164
+ | 9.1199 | 0.0086 | 1 | 9.0812 |
165
+ | 0.3411 | 0.2147 | 25 | 0.3025 |
166
+ | 0.3346 | 0.4294 | 50 | 0.2501 |
167
+
168
+
169
+ ### Framework versions
170
+
171
+ - PEFT 0.13.2
172
+ - Transformers 4.46.0
173
+ - Pytorch 2.5.0+cu124
174
+ - Datasets 3.0.1
175
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c3b9a3b41f7882e772884bd34b20cad438b60cb534ca6e19927228b26b823b
3
+ size 319977674