dtiapkin commited on
Commit
26814d9
1 Parent(s): e6580df

PPO with default parameters

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.83 +/- 15.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
RL_Course_LunarLanderv2_PPO_default.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65c59a376c86e614daf5fd4195da909725ebbe8f1d3cf02b674cd11d77945d1c
3
+ size 147315
RL_Course_LunarLanderv2_PPO_default/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
RL_Course_LunarLanderv2_PPO_default/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f462ed63310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462ed633a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f462ed63430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f462ed634c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f462ed63550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f462ed635e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f462ed63670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f462ed63700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f462ed63790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f462ed63820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f462ed638b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f462ed63940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f462ed5f420>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677011046926599767,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKKVvr4jlgg/djetveU8Hr+ptrG+ABWzuwAAAAAAAAAAZsC5veFcrLr+3L04AM6UM+dCPDpGzdu3AACAPwAAgD/mlUG9nL6nP0sPrb6i+gC/ongrvR5kHb4AAAAAAAAAAHM7ID42mRo9SM84O0Qfb74va1k987zOvAAAAAAAAAAA4OJEPgzNCD4iBwm+bNnDvsGsDz2MG8A8AAAAAAAAAAAmprC9UsDLuY1DRjhKgag0z+VpOkV2YrcAAIA/AACAP5q1J758bbk/DYIgvzKndb6bFXy+exvFvgAAAAAAAAAA85sLPuucUT92biw+phAdv/+XLj7k5UW8AAAAAAAAAAAN9Me94daSuk9VHDS1z6yvAcYVOznunLMAAIA/AACAPwbWLL5ON4i8M+lTu+LQm7l3U/I9FCaNOgAAgD8AAIA/baoqvjh+KT86lJm9nV8Yv9vSB75eMak9AAAAAAAAAADa+Pc9dgpevGbN4L2Dmbe959M7O7gqlD4AAIA/AACAPw3HH76fMQA+GvyqPpsnbb4tkTm9ltKMPgAAAAAAAAAAzcTsvAWyvrtmKnM8TDiHPPGNJr2A/2Q9AACAPwAAgD8zi887SBuEuqOZyjXDqxcxpftSOxAv+rQAAIA/AACAP20zkT7FF1Y/KV2NPsqhAb93If4+8p5YPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ9nqcsoccUCUhpRSlIwBbJRNHAGMAXSUR0Ce2zj0+TvBdX2UKGgGaAloD0MIbAcj9glSckCUhpRSlGgVS6toFkdAntuLfYSQHXV9lChoBmgJaA9DCGWMD7OXMnFAlIaUUpRoFU0mAWgWR0Ce28Av+OwQdX2UKGgGaAloD0MIrhHBOLhCc0CUhpRSlGgVS/poFkdAntvSxeLNwHV9lChoBmgJaA9DCMNkqmBU2jlAlIaUUpRoFUtdaBZHQJ7d8px3mmt1fZQoaAZoCWgPQwi7YduizLY3QJSGlFKUaBVLlGgWR0Ce3jYAKfFrdX2UKGgGaAloD0MIiEZ3EDtxckCUhpRSlGgVTSMBaBZHQJ7eR76YVqN1fZQoaAZoCWgPQwgZHCWvjjBwQJSGlFKUaBVLw2gWR0Ce3lVN5+pgdX2UKGgGaAloD0MIexSuR+HccECUhpRSlGgVS/JoFkdAnt52SdOIqXV9lChoBmgJaA9DCD0P7s5aOHBAlIaUUpRoFUvFaBZHQJ7edXMhX8x1fZQoaAZoCWgPQwhxrfawl5ZwQJSGlFKUaBVLv2gWR0Ce3qqNIbwSdX2UKGgGaAloD0MIzt4ZbRVbcECUhpRSlGgVS9doFkdAnt8VrylN13V9lChoBmgJaA9DCHdn7baLWXFAlIaUUpRoFUvAaBZHQJ7fiHGjsUt1fZQoaAZoCWgPQwjiHksf+sBxQJSGlFKUaBVL+2gWR0Ce36wKjSG8dX2UKGgGaAloD0MIq0GY233UcECUhpRSlGgVS9loFkdAnuE0WAPNFHV9lChoBmgJaA9DCDhpGhTNe2FAlIaUUpRoFU3oA2gWR0Ce4ZDG96C2dX2UKGgGaAloD0MI4Qm9/qRMYUCUhpRSlGgVTegDaBZHQJ7hv+glF+d1fZQoaAZoCWgPQwhNhXgk3mRxQJSGlFKUaBVLu2gWR0Ce4tE6kqMFdX2UKGgGaAloD0MI6J/gYgUhcUCUhpRSlGgVS8ZoFkdAnuM5v5xionV9lChoBmgJaA9DCGptGttrm3FAlIaUUpRoFUvaaBZHQJ7jRUFSsKd1fZQoaAZoCWgPQwg1mfG20uRxQJSGlFKUaBVL4GgWR0Ce5AYYR/VidX2UKGgGaAloD0MIQNr/AKtkckCUhpRSlGgVS7xoFkdAnuQxGx2SuHV9lChoBmgJaA9DCEELCRgdQXFAlIaUUpRoFUvSaBZHQJ7kkqBmPHV1fZQoaAZoCWgPQwhNhXgkHuZxQJSGlFKUaBVLpWgWR0Ce5TV32VVxdX2UKGgGaAloD0MIaThlbn51ckCUhpRSlGgVS/5oFkdAnuVActGutHV9lChoBmgJaA9DCKA01ChklHFAlIaUUpRoFUu8aBZHQJ7mLSRbKRx1fZQoaAZoCWgPQwhS19r71BlvQJSGlFKUaBVLxGgWR0Ce5o6qsEJTdX2UKGgGaAloD0MINjrnp/iqcECUhpRSlGgVS7VoFkdAnufpda+vhnV9lChoBmgJaA9DCKVN1T0y93BAlIaUUpRoFUvIaBZHQJ7n8jt5UtJ1fZQoaAZoCWgPQwhFuwopvzZyQJSGlFKUaBVLyGgWR0Ce6WUdq+JxdX2UKGgGaAloD0MIVJCfjRymcUCUhpRSlGgVS8poFkdAnumlS0jTrnV9lChoBmgJaA9DCLAfYoMF2XFAlIaUUpRoFUv5aBZHQJ7p2nsLORl1fZQoaAZoCWgPQwjgDz//PeRxQJSGlFKUaBVLy2gWR0Ce6sY+B6KMdX2UKGgGaAloD0MIK98zEuE/cUCUhpRSlGgVS+5oFkdAnusbNwBHTnV9lChoBmgJaA9DCMpRgChYcnJAlIaUUpRoFUvFaBZHQJ7sFhd+ocd1fZQoaAZoCWgPQwjQ0aqWdO1wQJSGlFKUaBVNAAFoFkdAnuxXXqZ+hHV9lChoBmgJaA9DCIhGdxD7knFAlIaUUpRoFUvwaBZHQJ7s4Vi4J/p1fZQoaAZoCWgPQwjggmxZPq1uQJSGlFKUaBVLvGgWR0Ce7TmZmZmadX2UKGgGaAloD0MIUYU/w9sNc0CUhpRSlGgVS8doFkdAnu2EaqCHynV9lChoBmgJaA9DCB06Pe9G53FAlIaUUpRoFUumaBZHQJ7uZ/tpmEp1fZQoaAZoCWgPQwgnM95WerBwQJSGlFKUaBVL32gWR0Ce8GkGA09AdX2UKGgGaAloD0MIAz+qYb8hc0CUhpRSlGgVS/toFkdAnvDE2YOUdXV9lChoBmgJaA9DCHxFt17TB3JAlIaUUpRoFUvWaBZHQJ7xKDM/yG11fZQoaAZoCWgPQwib49wmHKpxQJSGlFKUaBVL6mgWR0Ce8ivFm4AkdX2UKGgGaAloD0MIgH106sqdbkCUhpRSlGgVS7JoFkdAnvJjyauwHXV9lChoBmgJaA9DCOKsiJpoa3BAlIaUUpRoFUvoaBZHQJ7zQ21lXil1fZQoaAZoCWgPQwhccXFUbo9vQJSGlFKUaBVL72gWR0Ce88sHB1s+dX2UKGgGaAloD0MIMGR1q2dmckCUhpRSlGgVS9doFkdAnvQH/HYHxHV9lChoBmgJaA9DCEg0gSJWMXBAlIaUUpRoFUu0aBZHQJ70JufmLcd1fZQoaAZoCWgPQwgrhUAusdByQJSGlFKUaBVL1GgWR0Ce9D28IzFddX2UKGgGaAloD0MIUoAomDHXRUCUhpRSlGgVS4RoFkdAnvUDlPrOaHV9lChoBmgJaA9DCLmLMEW5jmVAlIaUUpRoFU3oA2gWR0Ce9YD7655JdX2UKGgGaAloD0MIwf9WsqP4cUCUhpRSlGgVS7VoFkdAnvY433pOe3V9lChoBmgJaA9DCDM2dLO/8WNAlIaUUpRoFU3oA2gWR0Ce9vWiDdxidX2UKGgGaAloD0MIQ4zXvKo5RkCUhpRSlGgVS45oFkdAnvbyuuA7P3V9lChoBmgJaA9DCJgYy/TLfGJAlIaUUpRoFU3oA2gWR0Ce97qpcX3ydX2UKGgGaAloD0MICAPPvYcrQUCUhpRSlGgVS5ZoFkdAnvhpON5t33V9lChoBmgJaA9DCMri/iPTCTRAlIaUUpRoFUuNaBZHQJ74kypJf6Z1fZQoaAZoCWgPQwjDmsqiMHxxQJSGlFKUaBVLtGgWR0Ce+e/oaDPGdX2UKGgGaAloD0MIDR07qESqYECUhpRSlGgVTegDaBZHQJ76/hybQTp1fZQoaAZoCWgPQwibcK/MW+1kQJSGlFKUaBVN6ANoFkdAnvstjkMkQnV9lChoBmgJaA9DCDhr8L5qj3JAlIaUUpRoFU0MAWgWR0Ce+zAhStNjdX2UKGgGaAloD0MIfLjkuJMNcUCUhpRSlGgVS9ZoFkdAnvtEu6ErXnV9lChoBmgJaA9DCLpKd9fZaGJAlIaUUpRoFU3oA2gWR0Ce+1/xUedTdX2UKGgGaAloD0MI+bt31Bi9cECUhpRSlGgVS8doFkdAnvvDlcQiA3V9lChoBmgJaA9DCIGVQ4tsNXBAlIaUUpRoFUuiaBZHQJ77x7WuoxZ1fZQoaAZoCWgPQwg7bvjdtAVyQJSGlFKUaBVNBAFoFkdAnvvmNR3u/nV9lChoBmgJaA9DCLAEUmKXpXBAlIaUUpRoFUuwaBZHQJ79d+jM3ZR1fZQoaAZoCWgPQwhUxOkkWxRyQJSGlFKUaBVL92gWR0Ce/Y8nNPgvdX2UKGgGaAloD0MIL1IoCx81cECUhpRSlGgVS9RoFkdAnv3x0uDjBHV9lChoBmgJaA9DCEoJwap6enFAlIaUUpRoFUvsaBZHQJ7+pGZuyeJ1fZQoaAZoCWgPQwgDJJpAEbdIQJSGlFKUaBVLimgWR0Ce/2xubZvldX2UKGgGaAloD0MIvi8uVSkWc0CUhpRSlGgVS99oFkdAnwAPX05EMXV9lChoBmgJaA9DCFg4SfPHLHJAlIaUUpRoFUvnaBZHQJ8AJGG21D11fZQoaAZoCWgPQwi2ZisvOWBwQJSGlFKUaBVLp2gWR0CfAFBi1AqvdX2UKGgGaAloD0MIfSQlPYxackCUhpRSlGgVS7hoFkdAnwC11GLDRHV9lChoBmgJaA9DCKUw73Em9G9AlIaUUpRoFUuwaBZHQJ8BNZcLSeB1fZQoaAZoCWgPQwhYjLrWXkBwQJSGlFKUaBVL2WgWR0CfAhbwjMV2dX2UKGgGaAloD0MIru/DQUK9cUCUhpRSlGgVS8poFkdAnwJGDg62fHV9lChoBmgJaA9DCCS5/If0lHFAlIaUUpRoFU0DAWgWR0CfAnAGjbi7dX2UKGgGaAloD0MI6zU9KKjFcECUhpRSlGgVS+FoFkdAnwLcmKIi1XV9lChoBmgJaA9DCChhpu0fVnNAlIaUUpRoFUv8aBZHQJ8DHdpItlJ1fZQoaAZoCWgPQwiqDONukJVtQJSGlFKUaBVLuGgWR0CfA5RkEs8QdX2UKGgGaAloD0MItklFY215b0CUhpRSlGgVS8poFkdAnwQhf4REnnV9lChoBmgJaA9DCEs/4exWi3FAlIaUUpRoFUu5aBZHQJ8FmbiIcip1fZQoaAZoCWgPQwj7ITZYuKFxQJSGlFKUaBVL6WgWR0CfBaLtNSIhdX2UKGgGaAloD0MIpIl3gKcQcUCUhpRSlGgVS6poFkdAnwW8+u/1x3V9lChoBmgJaA9DCJqYLsTqn3FAlIaUUpRoFUujaBZHQJ8Fx6Y3Ns51fZQoaAZoCWgPQwh5dCMsKsdUQJSGlFKUaBVLrmgWR0CfBfQ1aW5ZdX2UKGgGaAloD0MItMpMaT1pc0CUhpRSlGgVS/hoFkdAnwbc6aLGaXV9lChoBmgJaA9DCPNYMzLIYnBAlIaUUpRoFUuzaBZHQJ8IJcPe54J1fZQoaAZoCWgPQwiWQiCXOMhxQJSGlFKUaBVL32gWR0CfCDiyIHkcdX2UKGgGaAloD0MIXDgQkoUTcECUhpRSlGgVS71oFkdAnwjNiQT24HV9lChoBmgJaA9DCK2jqgmicm9AlIaUUpRoFUupaBZHQJ8JYIJJGvx1fZQoaAZoCWgPQwjYt5OI8CNzQJSGlFKUaBVL0WgWR0CfCg0Gu9vkdX2UKGgGaAloD0MIDHVY4ZZyckCUhpRSlGgVTQoBaBZHQJ8KZUxVQyh1fZQoaAZoCWgPQwhdxeI3heFuQJSGlFKUaBVLyWgWR0CfCzFyq+8HdX2UKGgGaAloD0MIwTdNnx2DbkCUhpRSlGgVTQEBaBZHQJ8LLw+dK/V1fZQoaAZoCWgPQwgAcy1awHtyQJSGlFKUaBVLtWgWR0CfDAXmeUY9dX2UKGgGaAloD0MIH2rbMIo5ckCUhpRSlGgVTQoBaBZHQJ8MbHfdhy91ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
RL_Course_LunarLanderv2_PPO_default/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c8a7f2a56885f65b54657526d320904194f0a8adad4ba9774ed6dc75c722cd8
3
+ size 87929
RL_Course_LunarLanderv2_PPO_default/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd0e5b73852b344916ba854b9dc5eeb9ecbcafb338546fbdbe8c94f1fdfc63e9
3
+ size 43393
RL_Course_LunarLanderv2_PPO_default/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
RL_Course_LunarLanderv2_PPO_default/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f462ed63310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462ed633a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f462ed63430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f462ed634c0>", "_build": "<function ActorCriticPolicy._build at 0x7f462ed63550>", "forward": "<function ActorCriticPolicy.forward at 0x7f462ed635e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f462ed63670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f462ed63700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f462ed63790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f462ed63820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f462ed638b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f462ed63940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f462ed5f420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677011046926599767, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKKVvr4jlgg/djetveU8Hr+ptrG+ABWzuwAAAAAAAAAAZsC5veFcrLr+3L04AM6UM+dCPDpGzdu3AACAPwAAgD/mlUG9nL6nP0sPrb6i+gC/ongrvR5kHb4AAAAAAAAAAHM7ID42mRo9SM84O0Qfb74va1k987zOvAAAAAAAAAAA4OJEPgzNCD4iBwm+bNnDvsGsDz2MG8A8AAAAAAAAAAAmprC9UsDLuY1DRjhKgag0z+VpOkV2YrcAAIA/AACAP5q1J758bbk/DYIgvzKndb6bFXy+exvFvgAAAAAAAAAA85sLPuucUT92biw+phAdv/+XLj7k5UW8AAAAAAAAAAAN9Me94daSuk9VHDS1z6yvAcYVOznunLMAAIA/AACAPwbWLL5ON4i8M+lTu+LQm7l3U/I9FCaNOgAAgD8AAIA/baoqvjh+KT86lJm9nV8Yv9vSB75eMak9AAAAAAAAAADa+Pc9dgpevGbN4L2Dmbe959M7O7gqlD4AAIA/AACAPw3HH76fMQA+GvyqPpsnbb4tkTm9ltKMPgAAAAAAAAAAzcTsvAWyvrtmKnM8TDiHPPGNJr2A/2Q9AACAPwAAgD8zi887SBuEuqOZyjXDqxcxpftSOxAv+rQAAIA/AACAP20zkT7FF1Y/KV2NPsqhAb93If4+8p5YPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ9nqcsoccUCUhpRSlIwBbJRNHAGMAXSUR0Ce2zj0+TvBdX2UKGgGaAloD0MIbAcj9glSckCUhpRSlGgVS6toFkdAntuLfYSQHXV9lChoBmgJaA9DCGWMD7OXMnFAlIaUUpRoFU0mAWgWR0Ce28Av+OwQdX2UKGgGaAloD0MIrhHBOLhCc0CUhpRSlGgVS/poFkdAntvSxeLNwHV9lChoBmgJaA9DCMNkqmBU2jlAlIaUUpRoFUtdaBZHQJ7d8px3mmt1fZQoaAZoCWgPQwi7YduizLY3QJSGlFKUaBVLlGgWR0Ce3jYAKfFrdX2UKGgGaAloD0MIiEZ3EDtxckCUhpRSlGgVTSMBaBZHQJ7eR76YVqN1fZQoaAZoCWgPQwgZHCWvjjBwQJSGlFKUaBVLw2gWR0Ce3lVN5+pgdX2UKGgGaAloD0MIexSuR+HccECUhpRSlGgVS/JoFkdAnt52SdOIqXV9lChoBmgJaA9DCD0P7s5aOHBAlIaUUpRoFUvFaBZHQJ7edXMhX8x1fZQoaAZoCWgPQwhxrfawl5ZwQJSGlFKUaBVLv2gWR0Ce3qqNIbwSdX2UKGgGaAloD0MIzt4ZbRVbcECUhpRSlGgVS9doFkdAnt8VrylN13V9lChoBmgJaA9DCHdn7baLWXFAlIaUUpRoFUvAaBZHQJ7fiHGjsUt1fZQoaAZoCWgPQwjiHksf+sBxQJSGlFKUaBVL+2gWR0Ce36wKjSG8dX2UKGgGaAloD0MIq0GY233UcECUhpRSlGgVS9loFkdAnuE0WAPNFHV9lChoBmgJaA9DCDhpGhTNe2FAlIaUUpRoFU3oA2gWR0Ce4ZDG96C2dX2UKGgGaAloD0MI4Qm9/qRMYUCUhpRSlGgVTegDaBZHQJ7hv+glF+d1fZQoaAZoCWgPQwhNhXgk3mRxQJSGlFKUaBVLu2gWR0Ce4tE6kqMFdX2UKGgGaAloD0MI6J/gYgUhcUCUhpRSlGgVS8ZoFkdAnuM5v5xionV9lChoBmgJaA9DCGptGttrm3FAlIaUUpRoFUvaaBZHQJ7jRUFSsKd1fZQoaAZoCWgPQwg1mfG20uRxQJSGlFKUaBVL4GgWR0Ce5AYYR/VidX2UKGgGaAloD0MIQNr/AKtkckCUhpRSlGgVS7xoFkdAnuQxGx2SuHV9lChoBmgJaA9DCEELCRgdQXFAlIaUUpRoFUvSaBZHQJ7kkqBmPHV1fZQoaAZoCWgPQwhNhXgkHuZxQJSGlFKUaBVLpWgWR0Ce5TV32VVxdX2UKGgGaAloD0MIaThlbn51ckCUhpRSlGgVS/5oFkdAnuVActGutHV9lChoBmgJaA9DCKA01ChklHFAlIaUUpRoFUu8aBZHQJ7mLSRbKRx1fZQoaAZoCWgPQwhS19r71BlvQJSGlFKUaBVLxGgWR0Ce5o6qsEJTdX2UKGgGaAloD0MINjrnp/iqcECUhpRSlGgVS7VoFkdAnufpda+vhnV9lChoBmgJaA9DCKVN1T0y93BAlIaUUpRoFUvIaBZHQJ7n8jt5UtJ1fZQoaAZoCWgPQwhFuwopvzZyQJSGlFKUaBVLyGgWR0Ce6WUdq+JxdX2UKGgGaAloD0MIVJCfjRymcUCUhpRSlGgVS8poFkdAnumlS0jTrnV9lChoBmgJaA9DCLAfYoMF2XFAlIaUUpRoFUv5aBZHQJ7p2nsLORl1fZQoaAZoCWgPQwjgDz//PeRxQJSGlFKUaBVLy2gWR0Ce6sY+B6KMdX2UKGgGaAloD0MIK98zEuE/cUCUhpRSlGgVS+5oFkdAnusbNwBHTnV9lChoBmgJaA9DCMpRgChYcnJAlIaUUpRoFUvFaBZHQJ7sFhd+ocd1fZQoaAZoCWgPQwjQ0aqWdO1wQJSGlFKUaBVNAAFoFkdAnuxXXqZ+hHV9lChoBmgJaA9DCIhGdxD7knFAlIaUUpRoFUvwaBZHQJ7s4Vi4J/p1fZQoaAZoCWgPQwjggmxZPq1uQJSGlFKUaBVLvGgWR0Ce7TmZmZmadX2UKGgGaAloD0MIUYU/w9sNc0CUhpRSlGgVS8doFkdAnu2EaqCHynV9lChoBmgJaA9DCB06Pe9G53FAlIaUUpRoFUumaBZHQJ7uZ/tpmEp1fZQoaAZoCWgPQwgnM95WerBwQJSGlFKUaBVL32gWR0Ce8GkGA09AdX2UKGgGaAloD0MIAz+qYb8hc0CUhpRSlGgVS/toFkdAnvDE2YOUdXV9lChoBmgJaA9DCHxFt17TB3JAlIaUUpRoFUvWaBZHQJ7xKDM/yG11fZQoaAZoCWgPQwib49wmHKpxQJSGlFKUaBVL6mgWR0Ce8ivFm4AkdX2UKGgGaAloD0MIgH106sqdbkCUhpRSlGgVS7JoFkdAnvJjyauwHXV9lChoBmgJaA9DCOKsiJpoa3BAlIaUUpRoFUvoaBZHQJ7zQ21lXil1fZQoaAZoCWgPQwhccXFUbo9vQJSGlFKUaBVL72gWR0Ce88sHB1s+dX2UKGgGaAloD0MIMGR1q2dmckCUhpRSlGgVS9doFkdAnvQH/HYHxHV9lChoBmgJaA9DCEg0gSJWMXBAlIaUUpRoFUu0aBZHQJ70JufmLcd1fZQoaAZoCWgPQwgrhUAusdByQJSGlFKUaBVL1GgWR0Ce9D28IzFddX2UKGgGaAloD0MIUoAomDHXRUCUhpRSlGgVS4RoFkdAnvUDlPrOaHV9lChoBmgJaA9DCLmLMEW5jmVAlIaUUpRoFU3oA2gWR0Ce9YD7655JdX2UKGgGaAloD0MIwf9WsqP4cUCUhpRSlGgVS7VoFkdAnvY433pOe3V9lChoBmgJaA9DCDM2dLO/8WNAlIaUUpRoFU3oA2gWR0Ce9vWiDdxidX2UKGgGaAloD0MIQ4zXvKo5RkCUhpRSlGgVS45oFkdAnvbyuuA7P3V9lChoBmgJaA9DCJgYy/TLfGJAlIaUUpRoFU3oA2gWR0Ce97qpcX3ydX2UKGgGaAloD0MICAPPvYcrQUCUhpRSlGgVS5ZoFkdAnvhpON5t33V9lChoBmgJaA9DCMri/iPTCTRAlIaUUpRoFUuNaBZHQJ74kypJf6Z1fZQoaAZoCWgPQwjDmsqiMHxxQJSGlFKUaBVLtGgWR0Ce+e/oaDPGdX2UKGgGaAloD0MIDR07qESqYECUhpRSlGgVTegDaBZHQJ76/hybQTp1fZQoaAZoCWgPQwibcK/MW+1kQJSGlFKUaBVN6ANoFkdAnvstjkMkQnV9lChoBmgJaA9DCDhr8L5qj3JAlIaUUpRoFU0MAWgWR0Ce+zAhStNjdX2UKGgGaAloD0MIfLjkuJMNcUCUhpRSlGgVS9ZoFkdAnvtEu6ErXnV9lChoBmgJaA9DCLpKd9fZaGJAlIaUUpRoFU3oA2gWR0Ce+1/xUedTdX2UKGgGaAloD0MI+bt31Bi9cECUhpRSlGgVS8doFkdAnvvDlcQiA3V9lChoBmgJaA9DCIGVQ4tsNXBAlIaUUpRoFUuiaBZHQJ77x7WuoxZ1fZQoaAZoCWgPQwg7bvjdtAVyQJSGlFKUaBVNBAFoFkdAnvvmNR3u/nV9lChoBmgJaA9DCLAEUmKXpXBAlIaUUpRoFUuwaBZHQJ79d+jM3ZR1fZQoaAZoCWgPQwhUxOkkWxRyQJSGlFKUaBVL92gWR0Ce/Y8nNPgvdX2UKGgGaAloD0MIL1IoCx81cECUhpRSlGgVS9RoFkdAnv3x0uDjBHV9lChoBmgJaA9DCEoJwap6enFAlIaUUpRoFUvsaBZHQJ7+pGZuyeJ1fZQoaAZoCWgPQwgDJJpAEbdIQJSGlFKUaBVLimgWR0Ce/2xubZvldX2UKGgGaAloD0MIvi8uVSkWc0CUhpRSlGgVS99oFkdAnwAPX05EMXV9lChoBmgJaA9DCFg4SfPHLHJAlIaUUpRoFUvnaBZHQJ8AJGG21D11fZQoaAZoCWgPQwi2ZisvOWBwQJSGlFKUaBVLp2gWR0CfAFBi1AqvdX2UKGgGaAloD0MIfSQlPYxackCUhpRSlGgVS7hoFkdAnwC11GLDRHV9lChoBmgJaA9DCKUw73Em9G9AlIaUUpRoFUuwaBZHQJ8BNZcLSeB1fZQoaAZoCWgPQwhYjLrWXkBwQJSGlFKUaBVL2WgWR0CfAhbwjMV2dX2UKGgGaAloD0MIru/DQUK9cUCUhpRSlGgVS8poFkdAnwJGDg62fHV9lChoBmgJaA9DCCS5/If0lHFAlIaUUpRoFU0DAWgWR0CfAnAGjbi7dX2UKGgGaAloD0MI6zU9KKjFcECUhpRSlGgVS+FoFkdAnwLcmKIi1XV9lChoBmgJaA9DCChhpu0fVnNAlIaUUpRoFUv8aBZHQJ8DHdpItlJ1fZQoaAZoCWgPQwiqDONukJVtQJSGlFKUaBVLuGgWR0CfA5RkEs8QdX2UKGgGaAloD0MItklFY215b0CUhpRSlGgVS8poFkdAnwQhf4REnnV9lChoBmgJaA9DCEs/4exWi3FAlIaUUpRoFUu5aBZHQJ8FmbiIcip1fZQoaAZoCWgPQwj7ITZYuKFxQJSGlFKUaBVL6WgWR0CfBaLtNSIhdX2UKGgGaAloD0MIpIl3gKcQcUCUhpRSlGgVS6poFkdAnwW8+u/1x3V9lChoBmgJaA9DCJqYLsTqn3FAlIaUUpRoFUujaBZHQJ8Fx6Y3Ns51fZQoaAZoCWgPQwh5dCMsKsdUQJSGlFKUaBVLrmgWR0CfBfQ1aW5ZdX2UKGgGaAloD0MItMpMaT1pc0CUhpRSlGgVS/hoFkdAnwbc6aLGaXV9lChoBmgJaA9DCPNYMzLIYnBAlIaUUpRoFUuzaBZHQJ8IJcPe54J1fZQoaAZoCWgPQwiWQiCXOMhxQJSGlFKUaBVL32gWR0CfCDiyIHkcdX2UKGgGaAloD0MIXDgQkoUTcECUhpRSlGgVS71oFkdAnwjNiQT24HV9lChoBmgJaA9DCK2jqgmicm9AlIaUUpRoFUupaBZHQJ8JYIJJGvx1fZQoaAZoCWgPQwjYt5OI8CNzQJSGlFKUaBVL0WgWR0CfCg0Gu9vkdX2UKGgGaAloD0MIDHVY4ZZyckCUhpRSlGgVTQoBaBZHQJ8KZUxVQyh1fZQoaAZoCWgPQwhdxeI3heFuQJSGlFKUaBVLyWgWR0CfCzFyq+8HdX2UKGgGaAloD0MIwTdNnx2DbkCUhpRSlGgVTQEBaBZHQJ8LLw+dK/V1fZQoaAZoCWgPQwgAcy1awHtyQJSGlFKUaBVLtWgWR0CfDAXmeUY9dX2UKGgGaAloD0MIH2rbMIo5ckCUhpRSlGgVTQoBaBZHQJ8MbHfdhy91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (216 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.8343995059675, "std_reward": 15.552994276073212, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-21T20:53:55.235851"}