File size: 1,812 Bytes
f54ee5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d059fe
 
 
 
 
 
 
 
f54ee5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d059fe
 
f54ee5c
 
 
2d059fe
f54ee5c
 
 
 
2d059fe
 
 
 
 
f54ee5c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
metrics:
- f1
- recall
model-index:
- name: bertweet-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bertweet-base

This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6568
- F1 Macro: 0.3902
- F1: 0.7805
- F1 Neg: 0.0
- Acc: 0.64
- Prec: 0.64
- Recall: 1.0
- Mcc: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1     | F1 Neg | Acc  | Prec | Recall | Mcc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:----:|:----:|:------:|:---:|
| No log        | 1.0   | 10   | 0.7766          | 0.3902   | 0.7805 | 0.0    | 0.64 | 0.64 | 1.0    | 0.0 |
| No log        | 2.0   | 20   | 0.6608          | 0.3902   | 0.7805 | 0.0    | 0.64 | 0.64 | 1.0    | 0.0 |
| No log        | 3.0   | 30   | 0.6568          | 0.3902   | 0.7805 | 0.0    | 0.64 | 0.64 | 1.0    | 0.0 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2