Model save
Browse files
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- F1 Macro: 0.
|
22 |
-
- F1: 0.
|
23 |
-
- F1 Neg: 0.
|
24 |
-
- Acc: 0.
|
25 |
-
- Prec: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- Mcc: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -50,16 +50,18 @@ The following hyperparameters were used during training:
|
|
50 |
- distributed_type: multi-GPU
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
-
- num_epochs:
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 | F1 Neg | Acc
|
59 |
-
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5822
|
21 |
+
- F1 Macro: 0.7750
|
22 |
+
- F1: 0.8571
|
23 |
+
- F1 Neg: 0.6929
|
24 |
+
- Acc: 0.805
|
25 |
+
- Prec: 0.8069
|
26 |
+
- Recall: 0.9141
|
27 |
+
- Mcc: 0.5646
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
50 |
- distributed_type: multi-GPU
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 5
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 | F1 Neg | Acc | Prec | Recall | Mcc |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|:------:|:------:|
|
60 |
+
| 0.6482 | 1.0 | 600 | 0.5610 | 0.6822 | 0.8022 | 0.5622 | 0.7275 | 0.7492 | 0.8633 | 0.3812 |
|
61 |
+
| 0.5567 | 2.0 | 1200 | 0.5125 | 0.7382 | 0.8364 | 0.64 | 0.775 | 0.7823 | 0.8984 | 0.4938 |
|
62 |
+
| 0.4549 | 3.0 | 1800 | 0.6164 | 0.7195 | 0.7588 | 0.6802 | 0.725 | 0.865 | 0.6758 | 0.4688 |
|
63 |
+
| 0.4021 | 4.0 | 2400 | 0.5785 | 0.7344 | 0.7875 | 0.6812 | 0.745 | 0.8438 | 0.7383 | 0.4789 |
|
64 |
+
| 0.3159 | 5.0 | 3000 | 0.5822 | 0.7750 | 0.8571 | 0.6929 | 0.805 | 0.8069 | 0.9141 | 0.5646 |
|
65 |
|
66 |
|
67 |
### Framework versions
|