|
import os |
|
os.system("hub install stylepro_artistic==1.0.1") |
|
import gradio as gr |
|
import paddlehub as hub |
|
import numpy as np |
|
from PIL import Image |
|
import cv2 |
|
|
|
stylepro_artistic = hub.Module(name="stylepro_artistic") |
|
|
|
def inference(content,style): |
|
result = stylepro_artistic.style_transfer( |
|
images=[{ |
|
'content': cv2.imread(content.name), |
|
'styles': [cv2.imread(style.name)] |
|
}]) |
|
return Image.fromarray(np.uint8(result[0]['data'])[:,:,::-1]).convert('RGB') |
|
|
|
title = " StyleProNet" |
|
description = "Gradio demo for Parameter-Free Style Projection for Arbitrary Style Transfer. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2003.07694'target='_blank'>Parameter-Free Style Projection for Arbitrary Style Transfer</a> | <a href='https://github.com/PaddlePaddle/PaddleHub' target='_blank'>Github Repo</a></p>" |
|
examples=[['mona1.jpeg','starry.jpeg']] |
|
iface = gr.Interface(inference, inputs=[gr.inputs.Image(type="file",label='content'),gr.inputs.Image(type="file",label='style')], outputs=gr.outputs.Image(type="pil"),enable_queue=True,title=title,article=article,description=description,examples=examples) |
|
iface.launch() |