File size: 1,731 Bytes
0b0bf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google/flan-t5-large
metrics:
- rouge
model-index:
- name: flant5-large-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flant5-large-lora

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6119
- Rouge1: 8.9675
- Rouge2: 0.6714
- Rougel: 8.0407
- Rougelsum: 8.3753
- Gen Len: 18.37

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.8402        | 1.0   | 1538 | 0.7486          | 8.8441 | 0.6859 | 7.9731 | 8.3103    | 19.502  |
| 0.8152        | 2.0   | 3076 | 0.6119          | 8.9675 | 0.6714 | 8.0407 | 8.3753    | 18.37   |


### Framework versions

- PEFT 0.11.1
- Transformers 4.36.1
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.15.2