Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.62 +/- 0.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19f97fd5ecd8fb287655d99f2c9288f41cdd31fa7253e07af9193712da6a825f
|
3 |
+
size 109512
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6946c43ca0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f6946c442d0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 2000000,
|
45 |
+
"_total_timesteps": 2000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675265407706981419,
|
50 |
+
"learning_rate": 0.001,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWjfKPi3UqrvlSAk/WjfKPi3UqrvlSAk/WjfKPi3UqrvlSAk/WjfKPi3UqrvlSAk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASy3KPwdB9D7kJcs/ONvVP/hbfT9Flli/XA/+vhkFJrw67x6/ndQdv7cutj+YnoQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABaN8o+LdSqu+VICT9mx3i8xnrduXUWSLxaN8o+LdSqu+VICT9mx3i8xnrduXUWSLxaN8o+LdSqu+VICT9mx3i8xnrduXUWSLxaN8o+LdSqu+VICT9mx3i8xnrduXUWSLyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.39495355 -0.00521328 0.53626853]\n [ 0.39495355 -0.00521328 0.53626853]\n [ 0.39495355 -0.00521328 0.53626853]\n [ 0.39495355 -0.00521328 0.53626853]]",
|
60 |
+
"desired_goal": "[[ 1.5795072 0.47705862 1.5870938 ]\n [ 1.6707525 0.9896846 -0.84604293]\n [-0.49621093 -0.01013305 -0.6208378 ]\n [-0.6165255 1.4233006 1.0360899 ]]",
|
61 |
+
"observation": "[[ 3.9495355e-01 -5.2132816e-03 5.3626853e-01 -1.5184259e-02\n -4.2243878e-04 -1.2212385e-02]\n [ 3.9495355e-01 -5.2132816e-03 5.3626853e-01 -1.5184259e-02\n -4.2243878e-04 -1.2212385e-02]\n [ 3.9495355e-01 -5.2132816e-03 5.3626853e-01 -1.5184259e-02\n -4.2243878e-04 -1.2212385e-02]\n [ 3.9495355e-01 -5.2132816e-03 5.3626853e-01 -1.5184259e-02\n -4.2243878e-04 -1.2212385e-02]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAerZvSxqQD0U4ow+7RQRvpprHT2OSpY9Vp15vRhSxL05HAY+dBscuzzOfz3wQgU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.10640336 0.04697625 0.27516234]\n [-0.14168139 0.03843269 0.07338439]\n [-0.06094106 -0.09585971 0.13096704]\n [-0.00238201 0.06245254 0.13013816]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": true,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpn1zf/W487+UhpRSlIwBbJRLMowBdJRHQLIYs2b5M111fZQoaAZoCWgPQwjZPuQtV7/zv5SGlFKUaBVLMmgWR0CyGJWgezUrdX2UKGgGaAloD0MIQPz89+C16r+UhpRSlGgVSzJoFkdAshhtDb8FZHV9lChoBmgJaA9DCGPvxRftce6/lIaUUpRoFUsyaBZHQLIYTPt2LYR1fZQoaAZoCWgPQwhWEANd+wLpv5SGlFKUaBVLMmgWR0CyGTutfXwtdX2UKGgGaAloD0MI4Lw48dWO5b+UhpRSlGgVSzJoFkdAshkd2ll9SnV9lChoBmgJaA9DCDEL7Zxmgdu/lIaUUpRoFUsyaBZHQLIY9UJfICF1fZQoaAZoCWgPQwhkeVc9YB7Wv5SGlFKUaBVLMmgWR0CyGNVYISlFdX2UKGgGaAloD0MIaQHaVrPO6r+UhpRSlGgVSzJoFkdAshnR3Roh6nV9lChoBmgJaA9DCJPlJJS+EOO/lIaUUpRoFUsyaBZHQLIZtB5X2dx1fZQoaAZoCWgPQwj36XjMQGXhv5SGlFKUaBVLMmgWR0CyGYt4mkWRdX2UKGgGaAloD0MIIQclzLR96b+UhpRSlGgVSzJoFkdAshlrWNFSbnV9lChoBmgJaA9DCHfWbrvQXOm/lIaUUpRoFUsyaBZHQLIaVk2gnMN1fZQoaAZoCWgPQwjZeoZwzDL2v5SGlFKUaBVLMmgWR0CyGjhuCPIXdX2UKGgGaAloD0MId2nDYWng5r+UhpRSlGgVSzJoFkdAshoP5vcafnV9lChoBmgJaA9DCBQIO8WqQea/lIaUUpRoFUsyaBZHQLIZ79aUzKt1fZQoaAZoCWgPQwgW3XpND8rzv5SGlFKUaBVLMmgWR0CyGt4mois5dX2UKGgGaAloD0MICBwJNNhU77+UhpRSlGgVSzJoFkdAshrATwlSj3V9lChoBmgJaA9DCGrdBrXfWu+/lIaUUpRoFUsyaBZHQLIal8RL9Mt1fZQoaAZoCWgPQwiv6xfshm3lv5SGlFKUaBVLMmgWR0CyGne+qR2bdX2UKGgGaAloD0MIbmx2pPrO4r+UhpRSlGgVSzJoFkdAshti8DjioHV9lChoBmgJaA9DCIgTmE7rNui/lIaUUpRoFUsyaBZHQLIbRVWjoIR1fZQoaAZoCWgPQwjGppVCIJfrv5SGlFKUaBVLMmgWR0CyGx0UbkwOdX2UKGgGaAloD0MIRDAOLh1z4b+UhpRSlGgVSzJoFkdAshr9HQQcxXV9lChoBmgJaA9DCEjdzr7yIOS/lIaUUpRoFUsyaBZHQLIb6yRSxaB1fZQoaAZoCWgPQwjRXKeRlkrxv5SGlFKUaBVLMmgWR0CyG81vMr3CdX2UKGgGaAloD0MIWg70UNuG47+UhpRSlGgVSzJoFkdAshuk6r/823V9lChoBmgJaA9DCCno9pLGqPG/lIaUUpRoFUsyaBZHQLIbhOFQEZB1fZQoaAZoCWgPQwjQtpp1xjfxv5SGlFKUaBVLMmgWR0CyHHWWt2cKdX2UKGgGaAloD0MI9bnaiv1l37+UhpRSlGgVSzJoFkdAshxX0OEuhHV9lChoBmgJaA9DCG3Jqgg3meu/lIaUUpRoFUsyaBZHQLIcLzxPO6d1fZQoaAZoCWgPQwg5fT1fs9zmv5SGlFKUaBVLMmgWR0CyHA8iW3SbdX2UKGgGaAloD0MInrex2ZFq4b+UhpRSlGgVSzJoFkdAshz94t6HCXV9lChoBmgJaA9DCMbCEDl9PeS/lIaUUpRoFUsyaBZHQLIc4BO58Sh1fZQoaAZoCWgPQwjDYWngRzXhv5SGlFKUaBVLMmgWR0CyHLd0aIepdX2UKGgGaAloD0MI95LGaB3V87+UhpRSlGgVSzJoFkdAshyXWvr4WXV9lChoBmgJaA9DCBGo/kEkw+u/lIaUUpRoFUsyaBZHQLIdiagmJFd1fZQoaAZoCWgPQwhrDaX2Ilrtv5SGlFKUaBVLMmgWR0CyHWvnnuAqdX2UKGgGaAloD0MIQgWHF0Qk5b+UhpRSlGgVSzJoFkdAsh1DRUm2LHV9lChoBmgJaA9DCPsioS3n0uG/lIaUUpRoFUsyaBZHQLIdIyPuG9J1fZQoaAZoCWgPQwifdCLBVLPkv5SGlFKUaBVLMmgWR0CyHiVMVUModX2UKGgGaAloD0MIUMWNW8zP3r+UhpRSlGgVSzJoFkdAsh4Hgdfb9XV9lChoBmgJaA9DCGxdaoR+pu+/lIaUUpRoFUsyaBZHQLId31JUYKp1fZQoaAZoCWgPQwhhM8AF2bLnv5SGlFKUaBVLMmgWR0CyHb9JjDsMdX2UKGgGaAloD0MIpriq7Lsi7L+UhpRSlGgVSzJoFkdAsh6uKpDNQnV9lChoBmgJaA9DCGb0o+GUOeq/lIaUUpRoFUsyaBZHQLIekHy3CsR1fZQoaAZoCWgPQwj0hvvIrcnlv5SGlFKUaBVLMmgWR0CyHmfz4DcNdX2UKGgGaAloD0MImyDqPgCp6L+UhpRSlGgVSzJoFkdAsh5H6MzdlHV9lChoBmgJaA9DCKzEPCtpxeS/lIaUUpRoFUsyaBZHQLIfK+eOGTN1fZQoaAZoCWgPQwhY4ZaPpKTpv5SGlFKUaBVLMmgWR0CyHw4a1kUcdX2UKGgGaAloD0MI/P7NixNf57+UhpRSlGgVSzJoFkdAsh7lggHNYHV9lChoBmgJaA9DCJoIG55eqfG/lIaUUpRoFUsyaBZHQLIexUmlZYB1fZQoaAZoCWgPQwh2ptB5jV3tv5SGlFKUaBVLMmgWR0CyH7bcKw6idX2UKGgGaAloD0MI+BxYjpCB5r+UhpRSlGgVSzJoFkdAsh+ZHQQcxXV9lChoBmgJaA9DCFgczvxqDuq/lIaUUpRoFUsyaBZHQLIfcIZqEe11fZQoaAZoCWgPQwiVumQcI9nmv5SGlFKUaBVLMmgWR0CyH1CIUJv6dX2UKGgGaAloD0MIwac5eZGJ6r+UhpRSlGgVSzJoFkdAsiA8t5D7ZXV9lChoBmgJaA9DCGhdo+VAD+a/lIaUUpRoFUsyaBZHQLIgHwwj+rF1fZQoaAZoCWgPQwjGMCdok8Psv5SGlFKUaBVLMmgWR0CyH/bqdH2AdX2UKGgGaAloD0MI6Sec3Vqm4b+UhpRSlGgVSzJoFkdAsh/W+XZ5A3V9lChoBmgJaA9DCNcTXRd+sPG/lIaUUpRoFUsyaBZHQLIg2TCcf/51fZQoaAZoCWgPQwjpR8Mpc3Ptv5SGlFKUaBVLMmgWR0CyILvybx3FdX2UKGgGaAloD0MIvi7Df7oB47+UhpRSlGgVSzJoFkdAsiCThxYJV3V9lChoBmgJaA9DCC4B+KdUSfC/lIaUUpRoFUsyaBZHQLIgc27FsHl1fZQoaAZoCWgPQwgXnMHfL2bpv5SGlFKUaBVLMmgWR0CyIVylN1yOdX2UKGgGaAloD0MIRGtFm+Pc77+UhpRSlGgVSzJoFkdAsiE+05U96nV9lChoBmgJaA9DCD3S4La2cOe/lIaUUpRoFUsyaBZHQLIhFkCmuT11fZQoaAZoCWgPQwh4CU59IPngv5SGlFKUaBVLMmgWR0CyIPY8QqZudX2UKGgGaAloD0MIjZyFPe1w4L+UhpRSlGgVSzJoFkdAsiHkxpL26HV9lChoBmgJaA9DCI4FhUGZRt6/lIaUUpRoFUsyaBZHQLIhxv1UVBV1fZQoaAZoCWgPQwgqj26ERcXjv5SGlFKUaBVLMmgWR0CyIZ5sKsuGdX2UKGgGaAloD0MIXwfOGVHa6r+UhpRSlGgVSzJoFkdAsiF+Zy+6AnV9lChoBmgJaA9DCF03pbxWwuq/lIaUUpRoFUsyaBZHQLIibPMSsbN1fZQoaAZoCWgPQwhYObTIdr7gv5SGlFKUaBVLMmgWR0CyIk8ibDuSdX2UKGgGaAloD0MI323eOCnM2b+UhpRSlGgVSzJoFkdAsiImj0th/nV9lChoBmgJaA9DCPSpY5XSs+G/lIaUUpRoFUsyaBZHQLIiBnl4keJ1fZQoaAZoCWgPQwhhxD4BFCPrv5SGlFKUaBVLMmgWR0CyIveVopQUdX2UKGgGaAloD0MIWvPjLy0q8L+UhpRSlGgVSzJoFkdAsiLZxuKoAHV9lChoBmgJaA9DCMbdIForWuW/lIaUUpRoFUsyaBZHQLIisTC+De11fZQoaAZoCWgPQwijA5KwbyfYv5SGlFKUaBVLMmgWR0CyIpEWRA8kdX2UKGgGaAloD0MIY9LfS+FB5r+UhpRSlGgVSzJoFkdAsiOCJrLyMHV9lChoBmgJaA9DCEPmyqDa4OC/lIaUUpRoFUsyaBZHQLIjZFXq7iB1fZQoaAZoCWgPQwjItgw4S8nuv5SGlFKUaBVLMmgWR0CyIzvLLZBcdX2UKGgGaAloD0MIFHgnnx7b5b+UhpRSlGgVSzJoFkdAsiMbxqfvnnV9lChoBmgJaA9DCNWUZB2OruC/lIaUUpRoFUsyaBZHQLIkCfU4JeF1fZQoaAZoCWgPQwgKZ7eWyXDuv5SGlFKUaBVLMmgWR0CyI+w8fV7QdX2UKGgGaAloD0MIKUAUzJiC7L+UhpRSlGgVSzJoFkdAsiPDrfLs8nV9lChoBmgJaA9DCF+VC5V/ree/lIaUUpRoFUsyaBZHQLIjo74zrNZ1fZQoaAZoCWgPQwhuNIC3QILdv5SGlFKUaBVLMmgWR0CyJJVJg9eQdX2UKGgGaAloD0MI5/wUx4FX57+UhpRSlGgVSzJoFkdAsiR3iVB2OnV9lChoBmgJaA9DCLzmVZ3VAuS/lIaUUpRoFUsyaBZHQLIkTvWpZOl1fZQoaAZoCWgPQwilETP7PEbtv5SGlFKUaBVLMmgWR0CyJC7pu/DcdX2UKGgGaAloD0MIg1Dex9Gc6b+UhpRSlGgVSzJoFkdAsiUbwXqJM3V9lChoBmgJaA9DCLlvtU5cDuK/lIaUUpRoFUsyaBZHQLIk/gTAWSF1fZQoaAZoCWgPQwgHCryTTw/ov5SGlFKUaBVLMmgWR0CyJNV7D2rXdX2UKGgGaAloD0MI06I+yR0247+UhpRSlGgVSzJoFkdAsiS1XMhX83V9lChoBmgJaA9DCDsZHCWvzui/lIaUUpRoFUsyaBZHQLIlpJSR8tx1fZQoaAZoCWgPQwhFuTR+4ZXsv5SGlFKUaBVLMmgWR0CyJYbLZBcBdX2UKGgGaAloD0MIjkC8rl+w6r+UhpRSlGgVSzJoFkdAsiVePn0TUXV9lChoBmgJaA9DCL+bbtkhfu6/lIaUUpRoFUsyaBZHQLIlPkX1rZd1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 62500,
|
87 |
+
"n_steps": 8,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 0.9,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 1.0,
|
93 |
+
"normalize_advantage": true
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a4a31b620faaab431f5d8015cb8b39772a80489cc34e8b089272267fb19bf0a
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0aec581bd0bcd6d6b2d9d4f54229652675c5beb13c869e4022e2ad751e3241e2
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6946c43ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6946c442d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675265407706981419, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWjfKPi3UqrvlSAk/WjfKPi3UqrvlSAk/WjfKPi3UqrvlSAk/WjfKPi3UqrvlSAk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASy3KPwdB9D7kJcs/ONvVP/hbfT9Flli/XA/+vhkFJrw67x6/ndQdv7cutj+YnoQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABaN8o+LdSqu+VICT9mx3i8xnrduXUWSLxaN8o+LdSqu+VICT9mx3i8xnrduXUWSLxaN8o+LdSqu+VICT9mx3i8xnrduXUWSLxaN8o+LdSqu+VICT9mx3i8xnrduXUWSLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39495355 -0.00521328 0.53626853]\n [ 0.39495355 -0.00521328 0.53626853]\n [ 0.39495355 -0.00521328 0.53626853]\n [ 0.39495355 -0.00521328 0.53626853]]", "desired_goal": "[[ 1.5795072 0.47705862 1.5870938 ]\n [ 1.6707525 0.9896846 -0.84604293]\n [-0.49621093 -0.01013305 -0.6208378 ]\n [-0.6165255 1.4233006 1.0360899 ]]", "observation": "[[ 3.9495355e-01 -5.2132816e-03 5.3626853e-01 -1.5184259e-02\n -4.2243878e-04 -1.2212385e-02]\n [ 3.9495355e-01 -5.2132816e-03 5.3626853e-01 -1.5184259e-02\n -4.2243878e-04 -1.2212385e-02]\n [ 3.9495355e-01 -5.2132816e-03 5.3626853e-01 -1.5184259e-02\n -4.2243878e-04 -1.2212385e-02]\n [ 3.9495355e-01 -5.2132816e-03 5.3626853e-01 -1.5184259e-02\n -4.2243878e-04 -1.2212385e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAerZvSxqQD0U4ow+7RQRvpprHT2OSpY9Vp15vRhSxL05HAY+dBscuzzOfz3wQgU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10640336 0.04697625 0.27516234]\n [-0.14168139 0.03843269 0.07338439]\n [-0.06094106 -0.09585971 0.13096704]\n [-0.00238201 0.06245254 0.13013816]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpn1zf/W487+UhpRSlIwBbJRLMowBdJRHQLIYs2b5M111fZQoaAZoCWgPQwjZPuQtV7/zv5SGlFKUaBVLMmgWR0CyGJWgezUrdX2UKGgGaAloD0MIQPz89+C16r+UhpRSlGgVSzJoFkdAshhtDb8FZHV9lChoBmgJaA9DCGPvxRftce6/lIaUUpRoFUsyaBZHQLIYTPt2LYR1fZQoaAZoCWgPQwhWEANd+wLpv5SGlFKUaBVLMmgWR0CyGTutfXwtdX2UKGgGaAloD0MI4Lw48dWO5b+UhpRSlGgVSzJoFkdAshkd2ll9SnV9lChoBmgJaA9DCDEL7Zxmgdu/lIaUUpRoFUsyaBZHQLIY9UJfICF1fZQoaAZoCWgPQwhkeVc9YB7Wv5SGlFKUaBVLMmgWR0CyGNVYISlFdX2UKGgGaAloD0MIaQHaVrPO6r+UhpRSlGgVSzJoFkdAshnR3Roh6nV9lChoBmgJaA9DCJPlJJS+EOO/lIaUUpRoFUsyaBZHQLIZtB5X2dx1fZQoaAZoCWgPQwj36XjMQGXhv5SGlFKUaBVLMmgWR0CyGYt4mkWRdX2UKGgGaAloD0MIIQclzLR96b+UhpRSlGgVSzJoFkdAshlrWNFSbnV9lChoBmgJaA9DCHfWbrvQXOm/lIaUUpRoFUsyaBZHQLIaVk2gnMN1fZQoaAZoCWgPQwjZeoZwzDL2v5SGlFKUaBVLMmgWR0CyGjhuCPIXdX2UKGgGaAloD0MId2nDYWng5r+UhpRSlGgVSzJoFkdAshoP5vcafnV9lChoBmgJaA9DCBQIO8WqQea/lIaUUpRoFUsyaBZHQLIZ79aUzKt1fZQoaAZoCWgPQwgW3XpND8rzv5SGlFKUaBVLMmgWR0CyGt4mois5dX2UKGgGaAloD0MICBwJNNhU77+UhpRSlGgVSzJoFkdAshrATwlSj3V9lChoBmgJaA9DCGrdBrXfWu+/lIaUUpRoFUsyaBZHQLIal8RL9Mt1fZQoaAZoCWgPQwiv6xfshm3lv5SGlFKUaBVLMmgWR0CyGne+qR2bdX2UKGgGaAloD0MIbmx2pPrO4r+UhpRSlGgVSzJoFkdAshti8DjioHV9lChoBmgJaA9DCIgTmE7rNui/lIaUUpRoFUsyaBZHQLIbRVWjoIR1fZQoaAZoCWgPQwjGppVCIJfrv5SGlFKUaBVLMmgWR0CyGx0UbkwOdX2UKGgGaAloD0MIRDAOLh1z4b+UhpRSlGgVSzJoFkdAshr9HQQcxXV9lChoBmgJaA9DCEjdzr7yIOS/lIaUUpRoFUsyaBZHQLIb6yRSxaB1fZQoaAZoCWgPQwjRXKeRlkrxv5SGlFKUaBVLMmgWR0CyG81vMr3CdX2UKGgGaAloD0MIWg70UNuG47+UhpRSlGgVSzJoFkdAshuk6r/823V9lChoBmgJaA9DCCno9pLGqPG/lIaUUpRoFUsyaBZHQLIbhOFQEZB1fZQoaAZoCWgPQwjQtpp1xjfxv5SGlFKUaBVLMmgWR0CyHHWWt2cKdX2UKGgGaAloD0MI9bnaiv1l37+UhpRSlGgVSzJoFkdAshxX0OEuhHV9lChoBmgJaA9DCG3Jqgg3meu/lIaUUpRoFUsyaBZHQLIcLzxPO6d1fZQoaAZoCWgPQwg5fT1fs9zmv5SGlFKUaBVLMmgWR0CyHA8iW3SbdX2UKGgGaAloD0MInrex2ZFq4b+UhpRSlGgVSzJoFkdAshz94t6HCXV9lChoBmgJaA9DCMbCEDl9PeS/lIaUUpRoFUsyaBZHQLIc4BO58Sh1fZQoaAZoCWgPQwjDYWngRzXhv5SGlFKUaBVLMmgWR0CyHLd0aIepdX2UKGgGaAloD0MI95LGaB3V87+UhpRSlGgVSzJoFkdAshyXWvr4WXV9lChoBmgJaA9DCBGo/kEkw+u/lIaUUpRoFUsyaBZHQLIdiagmJFd1fZQoaAZoCWgPQwhrDaX2Ilrtv5SGlFKUaBVLMmgWR0CyHWvnnuAqdX2UKGgGaAloD0MIQgWHF0Qk5b+UhpRSlGgVSzJoFkdAsh1DRUm2LHV9lChoBmgJaA9DCPsioS3n0uG/lIaUUpRoFUsyaBZHQLIdIyPuG9J1fZQoaAZoCWgPQwifdCLBVLPkv5SGlFKUaBVLMmgWR0CyHiVMVUModX2UKGgGaAloD0MIUMWNW8zP3r+UhpRSlGgVSzJoFkdAsh4Hgdfb9XV9lChoBmgJaA9DCGxdaoR+pu+/lIaUUpRoFUsyaBZHQLId31JUYKp1fZQoaAZoCWgPQwhhM8AF2bLnv5SGlFKUaBVLMmgWR0CyHb9JjDsMdX2UKGgGaAloD0MIpriq7Lsi7L+UhpRSlGgVSzJoFkdAsh6uKpDNQnV9lChoBmgJaA9DCGb0o+GUOeq/lIaUUpRoFUsyaBZHQLIekHy3CsR1fZQoaAZoCWgPQwj0hvvIrcnlv5SGlFKUaBVLMmgWR0CyHmfz4DcNdX2UKGgGaAloD0MImyDqPgCp6L+UhpRSlGgVSzJoFkdAsh5H6MzdlHV9lChoBmgJaA9DCKzEPCtpxeS/lIaUUpRoFUsyaBZHQLIfK+eOGTN1fZQoaAZoCWgPQwhY4ZaPpKTpv5SGlFKUaBVLMmgWR0CyHw4a1kUcdX2UKGgGaAloD0MI/P7NixNf57+UhpRSlGgVSzJoFkdAsh7lggHNYHV9lChoBmgJaA9DCJoIG55eqfG/lIaUUpRoFUsyaBZHQLIexUmlZYB1fZQoaAZoCWgPQwh2ptB5jV3tv5SGlFKUaBVLMmgWR0CyH7bcKw6idX2UKGgGaAloD0MI+BxYjpCB5r+UhpRSlGgVSzJoFkdAsh+ZHQQcxXV9lChoBmgJaA9DCFgczvxqDuq/lIaUUpRoFUsyaBZHQLIfcIZqEe11fZQoaAZoCWgPQwiVumQcI9nmv5SGlFKUaBVLMmgWR0CyH1CIUJv6dX2UKGgGaAloD0MIwac5eZGJ6r+UhpRSlGgVSzJoFkdAsiA8t5D7ZXV9lChoBmgJaA9DCGhdo+VAD+a/lIaUUpRoFUsyaBZHQLIgHwwj+rF1fZQoaAZoCWgPQwjGMCdok8Psv5SGlFKUaBVLMmgWR0CyH/bqdH2AdX2UKGgGaAloD0MI6Sec3Vqm4b+UhpRSlGgVSzJoFkdAsh/W+XZ5A3V9lChoBmgJaA9DCNcTXRd+sPG/lIaUUpRoFUsyaBZHQLIg2TCcf/51fZQoaAZoCWgPQwjpR8Mpc3Ptv5SGlFKUaBVLMmgWR0CyILvybx3FdX2UKGgGaAloD0MIvi7Df7oB47+UhpRSlGgVSzJoFkdAsiCThxYJV3V9lChoBmgJaA9DCC4B+KdUSfC/lIaUUpRoFUsyaBZHQLIgc27FsHl1fZQoaAZoCWgPQwgXnMHfL2bpv5SGlFKUaBVLMmgWR0CyIVylN1yOdX2UKGgGaAloD0MIRGtFm+Pc77+UhpRSlGgVSzJoFkdAsiE+05U96nV9lChoBmgJaA9DCD3S4La2cOe/lIaUUpRoFUsyaBZHQLIhFkCmuT11fZQoaAZoCWgPQwh4CU59IPngv5SGlFKUaBVLMmgWR0CyIPY8QqZudX2UKGgGaAloD0MIjZyFPe1w4L+UhpRSlGgVSzJoFkdAsiHkxpL26HV9lChoBmgJaA9DCI4FhUGZRt6/lIaUUpRoFUsyaBZHQLIhxv1UVBV1fZQoaAZoCWgPQwgqj26ERcXjv5SGlFKUaBVLMmgWR0CyIZ5sKsuGdX2UKGgGaAloD0MIXwfOGVHa6r+UhpRSlGgVSzJoFkdAsiF+Zy+6AnV9lChoBmgJaA9DCF03pbxWwuq/lIaUUpRoFUsyaBZHQLIibPMSsbN1fZQoaAZoCWgPQwhYObTIdr7gv5SGlFKUaBVLMmgWR0CyIk8ibDuSdX2UKGgGaAloD0MI323eOCnM2b+UhpRSlGgVSzJoFkdAsiImj0th/nV9lChoBmgJaA9DCPSpY5XSs+G/lIaUUpRoFUsyaBZHQLIiBnl4keJ1fZQoaAZoCWgPQwhhxD4BFCPrv5SGlFKUaBVLMmgWR0CyIveVopQUdX2UKGgGaAloD0MIWvPjLy0q8L+UhpRSlGgVSzJoFkdAsiLZxuKoAHV9lChoBmgJaA9DCMbdIForWuW/lIaUUpRoFUsyaBZHQLIisTC+De11fZQoaAZoCWgPQwijA5KwbyfYv5SGlFKUaBVLMmgWR0CyIpEWRA8kdX2UKGgGaAloD0MIY9LfS+FB5r+UhpRSlGgVSzJoFkdAsiOCJrLyMHV9lChoBmgJaA9DCEPmyqDa4OC/lIaUUpRoFUsyaBZHQLIjZFXq7iB1fZQoaAZoCWgPQwjItgw4S8nuv5SGlFKUaBVLMmgWR0CyIzvLLZBcdX2UKGgGaAloD0MIFHgnnx7b5b+UhpRSlGgVSzJoFkdAsiMbxqfvnnV9lChoBmgJaA9DCNWUZB2OruC/lIaUUpRoFUsyaBZHQLIkCfU4JeF1fZQoaAZoCWgPQwgKZ7eWyXDuv5SGlFKUaBVLMmgWR0CyI+w8fV7QdX2UKGgGaAloD0MIKUAUzJiC7L+UhpRSlGgVSzJoFkdAsiPDrfLs8nV9lChoBmgJaA9DCF+VC5V/ree/lIaUUpRoFUsyaBZHQLIjo74zrNZ1fZQoaAZoCWgPQwhuNIC3QILdv5SGlFKUaBVLMmgWR0CyJJVJg9eQdX2UKGgGaAloD0MI5/wUx4FX57+UhpRSlGgVSzJoFkdAsiR3iVB2OnV9lChoBmgJaA9DCLzmVZ3VAuS/lIaUUpRoFUsyaBZHQLIkTvWpZOl1fZQoaAZoCWgPQwilETP7PEbtv5SGlFKUaBVLMmgWR0CyJC7pu/DcdX2UKGgGaAloD0MIg1Dex9Gc6b+UhpRSlGgVSzJoFkdAsiUbwXqJM3V9lChoBmgJaA9DCLlvtU5cDuK/lIaUUpRoFUsyaBZHQLIk/gTAWSF1fZQoaAZoCWgPQwgHCryTTw/ov5SGlFKUaBVLMmgWR0CyJNV7D2rXdX2UKGgGaAloD0MI06I+yR0247+UhpRSlGgVSzJoFkdAsiS1XMhX83V9lChoBmgJaA9DCDsZHCWvzui/lIaUUpRoFUsyaBZHQLIlpJSR8tx1fZQoaAZoCWgPQwhFuTR+4ZXsv5SGlFKUaBVLMmgWR0CyJYbLZBcBdX2UKGgGaAloD0MIjkC8rl+w6r+UhpRSlGgVSzJoFkdAsiVePn0TUXV9lChoBmgJaA9DCL+bbtkhfu6/lIaUUpRoFUsyaBZHQLIlPkX1rZd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 1.0, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (598 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.6232797754637431, "std_reward": 0.1335224057209656, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T16:50:05.225225"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6826f803c91d4210c72eec9f158243907159294e79123e1211ad6389f60d0960
|
3 |
+
size 3056
|