File size: 2,296 Bytes
0c7e66c a78be4e 0c7e66c a78be4e 0c7e66c a78be4e 0c7e66c a78be4e 0c7e66c a78be4e 0c7e66c a78be4e 0c7e66c a78be4e 0c7e66c a78be4e 0c7e66c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2159
- Rouge1: 17.3504
- Rouge2: 8.219
- Rougel: 16.7598
- Rougelsum: 16.9027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 5.8554 | 1.0 | 1541 | 3.4109 | 14.0843 | 7.0483 | 13.7876 | 13.7424 |
| 3.5936 | 2.0 | 3082 | 3.3110 | 16.9351 | 8.9452 | 16.1951 | 16.2707 |
| 3.2943 | 3.0 | 4623 | 3.2440 | 18.9749 | 10.2572 | 18.3207 | 18.3447 |
| 3.1378 | 4.0 | 6164 | 3.2157 | 17.5435 | 9.5501 | 16.976 | 16.9846 |
| 3.0374 | 5.0 | 7705 | 3.2017 | 17.2499 | 8.6003 | 16.8574 | 16.8485 |
| 2.9644 | 6.0 | 9246 | 3.1948 | 16.7856 | 7.7093 | 16.3617 | 16.4731 |
| 2.921 | 7.0 | 10787 | 3.2160 | 18.1708 | 8.8001 | 17.4812 | 17.5949 |
| 2.8907 | 8.0 | 12328 | 3.2159 | 17.3504 | 8.219 | 16.7598 | 16.9027 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|