File size: 2,296 Bytes
0c7e66c
 
 
 
 
a78be4e
 
 
 
0c7e66c
a78be4e
0c7e66c
 
 
a78be4e
 
0c7e66c
a78be4e
0c7e66c
 
 
a78be4e
 
 
 
 
0c7e66c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a78be4e
 
 
 
 
 
 
0c7e66c
 
 
a78be4e
 
 
 
 
 
 
 
 
 
0c7e66c
 
 
 
 
a78be4e
0c7e66c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2159
- Rouge1: 17.3504
- Rouge2: 8.219
- Rougel: 16.7598
- Rougelsum: 16.9027

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 5.8554        | 1.0   | 1541  | 3.4109          | 14.0843 | 7.0483  | 13.7876 | 13.7424   |
| 3.5936        | 2.0   | 3082  | 3.3110          | 16.9351 | 8.9452  | 16.1951 | 16.2707   |
| 3.2943        | 3.0   | 4623  | 3.2440          | 18.9749 | 10.2572 | 18.3207 | 18.3447   |
| 3.1378        | 4.0   | 6164  | 3.2157          | 17.5435 | 9.5501  | 16.976  | 16.9846   |
| 3.0374        | 5.0   | 7705  | 3.2017          | 17.2499 | 8.6003  | 16.8574 | 16.8485   |
| 2.9644        | 6.0   | 9246  | 3.1948          | 16.7856 | 7.7093  | 16.3617 | 16.4731   |
| 2.921         | 7.0   | 10787 | 3.2160          | 18.1708 | 8.8001  | 17.4812 | 17.5949   |
| 2.8907        | 8.0   | 12328 | 3.2159          | 17.3504 | 8.219   | 16.7598 | 16.9027   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3