File size: 3,623 Bytes
6ecf0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: other
language:
- en
pipeline_tag: text-generation
inference: false
tags:
- transformers
- gguf
- imatrix
- phi-4
---
Quantizations of https://huggingface.co/microsoft/phi-4

### Inference Clients/UIs
* [llama.cpp](https://github.com/ggerganov/llama.cpp)
* [KoboldCPP](https://github.com/LostRuins/koboldcpp)
* [ollama](https://github.com/ollama/ollama)
* [jan](https://github.com/janhq/jan)
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [GPT4All](https://github.com/nomic-ai/gpt4all)
---

# From original readme

|                         |                                                                               |     
|-------------------------|-------------------------------------------------------------------------------|
| **Developers**          | Microsoft Research                                                            |
| **Description**         | `phi-4` is a state-of-the-art open model built upon a blend of synthetic datasets, data from filtered public domain websites, and acquired academic books and Q&A datasets. The goal of this approach was to ensure that small capable models were trained with data focused on high quality and advanced reasoning.<br><br>`phi-4` underwent a rigorous enhancement and alignment process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures                |
| **Architecture**        | 14B parameters, dense decoder-only Transformer model                          |
| **Inputs**              | Text, best suited for prompts in the chat format                              |
| **Context length**      | 16K tokens                                                                    |
| **GPUs**                | 1920 H100-80G                                                                 |
| **Training time**       | 21 days                                                                       |
| **Training data**       | 9.8T tokens                                                                   |
| **Outputs**             | Generated text in response to input                                           |
| **Dates**               | October 2024 – November 2024                                                  |
| **Status**              | Static model trained on an offline dataset with cutoff dates of June 2024 and earlier for publicly available data                                                                               |
| **Release date**        | December 12, 2024                                                             |
| **License**             | MIT                                                                         |


### Input Formats

Given the nature of the training data, `phi-4` is best suited for prompts using the chat format as follows: 

```bash
<|im_start|>system<|im_sep|>
You are a medieval knight and must provide explanations to modern people.<|im_end|>
<|im_start|>user<|im_sep|>
How should I explain the Internet?<|im_end|>
<|im_start|>assistant<|im_sep|>
```

### With `transformers`

```python
import transformers

pipeline = transformers.pipeline(
    "text-generation",
    model="microsoft/phi-4",
    model_kwargs={"torch_dtype": "auto"},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a medieval knight and must provide explanations to modern people."},
    {"role": "user", "content": "How should I explain the Internet?"},
]

outputs = pipeline(messages, max_new_tokens=128)
print(outputs[0]["generated_text"][-1])
```