--- library_name: peft base_model: katuni4ka/tiny-random-qwen1.5-moe tags: - axolotl - generated_from_trainer model-index: - name: 264cc8ce-80ad-156b-26e5-fcb377f6df87 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-qwen1.5-moe bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cc257d59f46165df_train_data.json ds_type: json format: custom path: /workspace/input_data/cc257d59f46165df_train_data.json type: field_instruction: Query field_output: Answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/264cc8ce-80ad-156b-26e5-fcb377f6df87 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/cc257d59f46165df_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c84d9086-cc55-4202-87fa-830d96776ff3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c84d9086-cc55-4202-87fa-830d96776ff3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 264cc8ce-80ad-156b-26e5-fcb377f6df87 This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 11.9398 | | 11.9394 | 0.0090 | 10 | 11.9377 | | 11.9357 | 0.0180 | 20 | 11.9333 | | 11.9306 | 0.0270 | 30 | 11.9299 | | 11.9186 | 0.0360 | 40 | 11.9281 | | 11.9246 | 0.0450 | 50 | 11.9278 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1