--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 405d8991-1b79-965b-4b7d-69757a4db880 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3-mini-4k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ca95c1dd76317914_train_data.json ds_type: json format: custom path: /workspace/input_data/ca95c1dd76317914_train_data.json type: field_instruction: input field_output: code_output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/405d8991-1b79-965b-4b7d-69757a4db880 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/ca95c1dd76317914_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a9a4defb-80a3-4283-88ae-5b50de731b69 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a9a4defb-80a3-4283-88ae-5b50de731b69 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 405d8991-1b79-965b-4b7d-69757a4db880 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 0.1850 | | 0.6331 | 0.0054 | 10 | 0.1662 | | 0.4692 | 0.0107 | 20 | 0.1223 | | 0.4076 | 0.0161 | 30 | 0.1015 | | 0.394 | 0.0215 | 40 | 0.0966 | | 0.4302 | 0.0269 | 50 | 0.0957 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1