File size: 2,352 Bytes
ea0efa5 dfd3fec ea0efa5 dfd3fec ea0efa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: out
results: []
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# mistral-alpaca-finetune
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9152 | 0.01 | 1 | 0.9037 |
| 0.9101 | 0.15 | 18 | 0.8461 |
| 0.7589 | 0.3 | 36 | 0.8437 |
| 0.8274 | 0.45 | 54 | 0.8441 |
| 0.7255 | 0.61 | 72 | 0.8435 |
| 0.85 | 0.76 | 90 | 0.8419 |
| 0.9083 | 0.91 | 108 | 0.8408 |
| 0.3208 | 1.06 | 126 | 0.9177 |
| 0.3738 | 1.21 | 144 | 0.8924 |
| 0.4034 | 1.36 | 162 | 0.8914 |
| 0.3936 | 1.51 | 180 | 0.9032 |
| 0.3188 | 1.66 | 198 | 0.9001 |
| 0.4331 | 1.82 | 216 | 0.8973 |
| 0.3946 | 1.97 | 234 | 0.8963 |
| 0.1531 | 2.12 | 252 | 0.9653 |
| 0.1741 | 2.27 | 270 | 0.9841 |
| 0.2371 | 2.42 | 288 | 0.9784 |
| 0.271 | 2.57 | 306 | 0.9801 |
| 0.2632 | 2.72 | 324 | 0.9808 |
| 0.1691 | 2.87 | 342 | 0.9808 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|