File size: 2,372 Bytes
d9abd58
 
 
 
 
 
 
 
 
 
 
 
 
 
e9734e4
d9abd58
e9734e4
d9abd58
 
 
 
 
e9734e4
d9abd58
 
 
 
 
 
 
e9734e4
d9abd58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: qlora-out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# mistral-alpaca-qlora

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3095

## Model description

Standard mistral 7B fine tuned with alpaca format.

## Intended uses & limitations

More information needed

## Training and evaluation data

mhenrichsen/alpaca_2k_test

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.5317        | 0.07  | 1    | 5.2182          |
| 5.438         | 0.2   | 3    | 4.7897          |
| 4.1476        | 0.4   | 6    | 3.4313          |
| 3.2037        | 0.6   | 9    | 2.8663          |
| 2.7895        | 0.8   | 12   | 2.5112          |
| 2.3139        | 1.0   | 15   | 2.1467          |
| 2.1672        | 1.2   | 18   | 1.8620          |
| 1.9095        | 1.4   | 21   | 1.6519          |
| 1.5397        | 1.6   | 24   | 1.5429          |
| 1.6327        | 1.8   | 27   | 1.4518          |
| 1.3676        | 2.0   | 30   | 1.3892          |
| 1.3906        | 2.2   | 33   | 1.3531          |
| 1.4096        | 2.4   | 36   | 1.3314          |
| 1.3278        | 2.6   | 39   | 1.3165          |
| 1.3007        | 2.8   | 42   | 1.3107          |
| 1.2848        | 3.0   | 45   | 1.3095          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0