Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: mistral-alpaca2k-3e
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
12 |
+
# mistral-alpaca2k-3e
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.8850
|
17 |
+
|
18 |
+
## Training procedure
|
19 |
+
accelerate launch -m axolotl.cli.train examples/mistral/qlora.yml
|
20 |
+
|
21 |
+
### Training hyperparameters
|
22 |
+
|
23 |
+
The following hyperparameters were used during training:
|
24 |
+
- learning_rate: 0.0002
|
25 |
+
- train_batch_size: 2
|
26 |
+
- eval_batch_size: 2
|
27 |
+
- seed: 42
|
28 |
+
- gradient_accumulation_steps: 4
|
29 |
+
- total_train_batch_size: 8
|
30 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
31 |
+
- lr_scheduler_type: cosine
|
32 |
+
- lr_scheduler_warmup_steps: 10
|
33 |
+
- num_epochs: 3
|
34 |
+
|
35 |
+
### Training results
|
36 |
+
|
37 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
38 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
39 |
+
| 1.392 | 0.0 | 1 | 1.2581 |
|
40 |
+
| 0.912 | 0.15 | 36 | 0.7686 |
|
41 |
+
| 0.7114 | 0.3 | 72 | 0.7590 |
|
42 |
+
| 0.7849 | 0.45 | 108 | 0.7561 |
|
43 |
+
| 0.693 | 0.61 | 144 | 0.7546 |
|
44 |
+
| 0.686 | 0.76 | 180 | 0.7538 |
|
45 |
+
| 0.782 | 0.91 | 216 | 0.7524 |
|
46 |
+
| 0.5691 | 1.06 | 252 | 0.7700 |
|
47 |
+
| 0.5295 | 1.21 | 288 | 0.7883 |
|
48 |
+
| 0.5313 | 1.36 | 324 | 0.7876 |
|
49 |
+
| 0.4994 | 1.52 | 360 | 0.7971 |
|
50 |
+
| 0.6007 | 1.67 | 396 | 0.7881 |
|
51 |
+
| 0.5459 | 1.82 | 432 | 0.7911 |
|
52 |
+
| 0.5194 | 1.97 | 468 | 0.7924 |
|
53 |
+
| 0.3376 | 2.12 | 504 | 0.8711 |
|
54 |
+
| 0.2983 | 2.27 | 540 | 0.8916 |
|
55 |
+
| 0.341 | 2.43 | 576 | 0.8891 |
|
56 |
+
| 0.2961 | 2.58 | 612 | 0.8861 |
|
57 |
+
| 0.2469 | 2.73 | 648 | 0.8860 |
|
58 |
+
| 0.3535 | 2.88 | 684 | 0.8850 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.35.2
|
64 |
+
- Pytorch 2.0.1+cu118
|
65 |
+
- Datasets 2.15.0
|
66 |
+
- Tokenizers 0.15.0
|