File size: 2,328 Bytes
25035de cadb18a 5baf8f5 cadb18a 25035de cadb18a 5baf8f5 cadb18a 772ca35 cadb18a 772ca35 cadb18a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: mistral-alpaca2k-3e
results: []
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# mistral-alpaca2k-3e
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8850
## Training procedure
accelerate launch -m axolotl.cli.train examples/mistral/qlora.yml
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.392 | 0.0 | 1 | 1.2581 |
| 0.912 | 0.15 | 36 | 0.7686 |
| 0.7114 | 0.3 | 72 | 0.7590 |
| 0.7849 | 0.45 | 108 | 0.7561 |
| 0.693 | 0.61 | 144 | 0.7546 |
| 0.686 | 0.76 | 180 | 0.7538 |
| 0.782 | 0.91 | 216 | 0.7524 |
| 0.5691 | 1.06 | 252 | 0.7700 |
| 0.5295 | 1.21 | 288 | 0.7883 |
| 0.5313 | 1.36 | 324 | 0.7876 |
| 0.4994 | 1.52 | 360 | 0.7971 |
| 0.6007 | 1.67 | 396 | 0.7881 |
| 0.5459 | 1.82 | 432 | 0.7911 |
| 0.5194 | 1.97 | 468 | 0.7924 |
| 0.3376 | 2.12 | 504 | 0.8711 |
| 0.2983 | 2.27 | 540 | 0.8916 |
| 0.341 | 2.43 | 576 | 0.8891 |
| 0.2961 | 2.58 | 612 | 0.8861 |
| 0.2469 | 2.73 | 648 | 0.8860 |
| 0.3535 | 2.88 | 684 | 0.8850 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|