dwililiya commited on
Commit
150ca3b
·
verified ·
1 Parent(s): d6f9bea

upload README and requirement

Browse files
Files changed (2) hide show
  1. README.md +35 -3
  2. requirement.txt +7 -0
README.md CHANGED
@@ -1,3 +1,35 @@
1
- ---
2
- license: cdla-sharing-1.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Classification of Sugarcane Leaf Disease
2
+
3
+ ## Model Description
4
+ The model is based on EfficientNet architecture and has been fine-tuned on a balanced dataset containing six classes:
5
+
6
+ - **Bacterial Blight Disease**
7
+ - **Healthy Leaves**
8
+ - **Mosaic Disease**
9
+ - **Red Rot Disease**
10
+ - **Rust Disease**
11
+ - **Yellow Disease**
12
+
13
+ The model accepts RGB images of sugarcane leaves and outputs the predicted disease class.
14
+
15
+ ## Dataset
16
+ The dataset used for training consists of **19926 images** of sugarcane leaves, evenly distributed across the six disease classes. Each image has been pre-processed and augmented to improve model performance.
17
+
18
+ ### Data Augmentation Techniques Used:
19
+
20
+ - Random rotation
21
+ - Flipping
22
+ - Zooming
23
+ - Resizing
24
+ - Cropping
25
+
26
+ ## Model Evaluation
27
+ Epoch [10/10], Loss: 0.2903, Accuracy: 90.28%
28
+ Validation Loss: 0.3633, Accuracy: 86.32%
29
+
30
+ Accuracy_test: 0.8683
31
+
32
+ ## Acknowledgements
33
+ The dataset used for training can be found : https://www.kaggle.com/datasets/akilesh253/sugarcane-plant-diseases-dataset
34
+
35
+ ## License : CDLA-Sharing-1.0
requirement.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ torch==2.0.0
2
+ torchvision==0.15.0
3
+ pandas==1.5.3
4
+ numpy==1.24.2
5
+ matplotlib==3.7.1
6
+ Pillow==9.2.0
7
+ scikit-learn==1.2.0