Upload pose_configuration_baichuan.py with huggingface_hub
Browse files
pose_configuration_baichuan.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modification Copyright 2023 Dawei Zhu
|
2 |
+
# Copyright 2023 Baichuan Inc. All Rights Reserved.
|
3 |
+
|
4 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
5 |
+
#
|
6 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
7 |
+
# and OPT implementations in this library. It has been modified from its
|
8 |
+
# original forms to accommodate minor architectural differences compared
|
9 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
|
23 |
+
from transformers.configuration_utils import PretrainedConfig
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class BaichuanConfig(PretrainedConfig):
|
31 |
+
model_type = "baichuan"
|
32 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
vocab_size=125696,
|
37 |
+
hidden_size=4096,
|
38 |
+
intermediate_size=11008,
|
39 |
+
num_hidden_layers=32,
|
40 |
+
num_attention_heads=32,
|
41 |
+
hidden_act="silu",
|
42 |
+
max_position_embeddings=4096,
|
43 |
+
initializer_range=0.02,
|
44 |
+
rms_norm_eps=1e-6,
|
45 |
+
use_cache=True,
|
46 |
+
pad_token_id=0,
|
47 |
+
bos_token_id=1,
|
48 |
+
eos_token_id=2,
|
49 |
+
tie_word_embeddings=False,
|
50 |
+
z_loss_weight=0,
|
51 |
+
rope_scaling=None,
|
52 |
+
**kwargs,
|
53 |
+
):
|
54 |
+
self.vocab_size = vocab_size
|
55 |
+
self.max_position_embeddings = max_position_embeddings
|
56 |
+
self.hidden_size = hidden_size
|
57 |
+
self.intermediate_size = intermediate_size
|
58 |
+
self.num_hidden_layers = num_hidden_layers
|
59 |
+
self.num_attention_heads = num_attention_heads
|
60 |
+
self.hidden_act = hidden_act
|
61 |
+
self.initializer_range = initializer_range
|
62 |
+
self.rms_norm_eps = rms_norm_eps
|
63 |
+
self.use_cache = use_cache
|
64 |
+
|
65 |
+
self.rope_scaling = rope_scaling
|
66 |
+
self._rope_scaling_validation()
|
67 |
+
|
68 |
+
self.z_loss_weight = z_loss_weight
|
69 |
+
super().__init__(
|
70 |
+
pad_token_id=pad_token_id,
|
71 |
+
bos_token_id=bos_token_id,
|
72 |
+
eos_token_id=eos_token_id,
|
73 |
+
tie_word_embeddings=tie_word_embeddings,
|
74 |
+
**kwargs,
|
75 |
+
)
|
76 |
+
|
77 |
+
def _rope_scaling_validation(self):
|
78 |
+
"""
|
79 |
+
Validate the `rope_scaling` configuration.
|
80 |
+
"""
|
81 |
+
if self.rope_scaling is None:
|
82 |
+
return
|
83 |
+
|
84 |
+
if not isinstance(self.rope_scaling, dict):
|
85 |
+
raise ValueError(
|
86 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
87 |
+
f"got {self.rope_scaling}"
|
88 |
+
)
|
89 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
90 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
91 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "vanilla_ntk", "yarn"]:
|
92 |
+
raise ValueError(
|
93 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'smart_linear', 'dynamic', 'vanilla_ntk', 'yarn'], got {rope_scaling_type}"
|
94 |
+
)
|
95 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
96 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|