LGM-full / lgm /lgm.py
dylanebert's picture
dylanebert HF staff
add LGM
28c6190
import os
import warnings
from functools import partial
from typing import Literal, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from diff_gaussian_rasterization import (
GaussianRasterizationSettings,
GaussianRasterizer,
)
from diffusers import ConfigMixin, ModelMixin
from torch import Tensor, nn
def look_at(campos):
forward_vector = -campos / np.linalg.norm(campos, axis=-1)
up_vector = np.array([0, 1, 0], dtype=np.float32)
right_vector = np.cross(up_vector, forward_vector)
up_vector = np.cross(forward_vector, right_vector)
R = np.stack([right_vector, up_vector, forward_vector], axis=-1)
return R
def orbit_camera(elevation, azimuth, radius=1):
elevation = np.deg2rad(elevation)
azimuth = np.deg2rad(azimuth)
x = radius * np.cos(elevation) * np.sin(azimuth)
y = -radius * np.sin(elevation)
z = radius * np.cos(elevation) * np.cos(azimuth)
campos = np.array([x, y, z])
T = np.eye(4, dtype=np.float32)
T[:3, :3] = look_at(campos)
T[:3, 3] = campos
return T
def get_rays(pose, h, w, fovy, opengl=True):
x, y = torch.meshgrid(
torch.arange(w, device=pose.device),
torch.arange(h, device=pose.device),
indexing="xy",
)
x = x.flatten()
y = y.flatten()
cx = w * 0.5
cy = h * 0.5
focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))
camera_dirs = F.pad(
torch.stack(
[
(x - cx + 0.5) / focal,
(y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
],
dim=-1,
),
(0, 1),
value=(-1.0 if opengl else 1.0),
)
rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1)
rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d)
rays_o = rays_o.view(h, w, 3)
rays_d = F.normalize(rays_d, dim=-1).view(h, w, 3)
return rays_o, rays_d
class GaussianRenderer:
def __init__(self, fovy, output_size):
self.output_size = output_size
self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
zfar = 2.5
znear = 0.1
self.tan_half_fov = np.tan(0.5 * np.deg2rad(fovy))
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
self.proj_matrix[2, 2] = (zfar + znear) / (zfar - znear)
self.proj_matrix[3, 2] = -(zfar * znear) / (zfar - znear)
self.proj_matrix[2, 3] = 1
def render(
self,
gaussians,
cam_view,
cam_view_proj,
cam_pos,
bg_color=None,
scale_modifier=1,
):
device = gaussians.device
B, V = cam_view.shape[:2]
images = []
alphas = []
for b in range(B):
means3D = gaussians[b, :, 0:3].contiguous().float()
opacity = gaussians[b, :, 3:4].contiguous().float()
scales = gaussians[b, :, 4:7].contiguous().float()
rotations = gaussians[b, :, 7:11].contiguous().float()
rgbs = gaussians[b, :, 11:].contiguous().float()
for v in range(V):
view_matrix = cam_view[b, v].float()
view_proj_matrix = cam_view_proj[b, v].float()
campos = cam_pos[b, v].float()
raster_settings = GaussianRasterizationSettings(
image_height=self.output_size,
image_width=self.output_size,
tanfovx=self.tan_half_fov,
tanfovy=self.tan_half_fov,
bg=self.bg_color if bg_color is None else bg_color,
scale_modifier=scale_modifier,
viewmatrix=view_matrix,
projmatrix=view_proj_matrix,
sh_degree=0,
campos=campos,
prefiltered=False,
debug=False,
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
rendered_image, _, _, rendered_alpha = rasterizer(
means3D=means3D,
means2D=torch.zeros_like(
means3D, dtype=torch.float32, device=device
),
shs=None,
colors_precomp=rgbs,
opacities=opacity,
scales=scales,
rotations=rotations,
cov3D_precomp=None,
)
rendered_image = rendered_image.clamp(0, 1)
images.append(rendered_image)
alphas.append(rendered_alpha)
images = torch.stack(images, dim=0).view(
B, V, 3, self.output_size, self.output_size
)
alphas = torch.stack(alphas, dim=0).view(
B, V, 1, self.output_size, self.output_size
)
return {"image": images, "alpha": alphas}
def save_ply(self, gaussians, path):
assert gaussians.shape[0] == 1, "only support batch size 1"
from plyfile import PlyData, PlyElement
means3D = gaussians[0, :, 0:3].contiguous().float()
opacity = gaussians[0, :, 3:4].contiguous().float()
scales = gaussians[0, :, 4:7].contiguous().float()
rotations = gaussians[0, :, 7:11].contiguous().float()
shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float()
mask = opacity.squeeze(-1) >= 0.005
means3D = means3D[mask]
opacity = opacity[mask]
scales = scales[mask]
rotations = rotations[mask]
shs = shs[mask]
opacity = opacity.clamp(1e-6, 1 - 1e-6)
opacity = torch.log(opacity / (1 - opacity))
scales = torch.log(scales + 1e-8)
shs = (shs - 0.5) / 0.28209479177387814
xyzs = means3D.detach().cpu().numpy()
f_dc = (
shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
)
opacities = opacity.detach().cpu().numpy()
scales = scales.detach().cpu().numpy()
rotations = rotations.detach().cpu().numpy()
h = ["x", "y", "z"]
for i in range(f_dc.shape[1]):
h.append("f_dc_{}".format(i))
h.append("opacity")
for i in range(scales.shape[1]):
h.append("scale_{}".format(i))
for i in range(rotations.shape[1]):
h.append("rot_{}".format(i))
dtype_full = [(attribute, "f4") for attribute in h]
elements = np.empty(xyzs.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, "vertex")
PlyData([el]).write(path)
class LGM(ModelMixin, ConfigMixin):
def __init__(self):
super().__init__()
self.input_size = 256
self.splat_size = 128
self.output_size = 512
self.radius = 1.5
self.fovy = 49.1
self.unet = UNet(
9,
14,
down_channels=(64, 128, 256, 512, 1024, 1024),
down_attention=(False, False, False, True, True, True),
mid_attention=True,
up_channels=(1024, 1024, 512, 256, 128),
up_attention=(True, True, True, False, False),
)
self.conv = nn.Conv2d(14, 14, kernel_size=1)
self.gs = GaussianRenderer(self.fovy, self.output_size)
self.pos_act = lambda x: x.clamp(-1, 1)
self.scale_act = lambda x: 0.1 * F.softplus(x)
self.opacity_act = lambda x: torch.sigmoid(x)
self.rot_act = F.normalize
self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5
def prepare_default_rays(self, device, elevation=0):
cam_poses = np.stack(
[
orbit_camera(elevation, 0, radius=self.radius),
orbit_camera(elevation, 90, radius=self.radius),
orbit_camera(elevation, 180, radius=self.radius),
orbit_camera(elevation, 270, radius=self.radius),
],
axis=0,
)
cam_poses = torch.from_numpy(cam_poses)
rays_embeddings = []
for i in range(cam_poses.shape[0]):
rays_o, rays_d = get_rays(
cam_poses[i], self.input_size, self.input_size, self.fovy
)
rays_plucker = torch.cat(
[torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1
)
rays_embeddings.append(rays_plucker)
rays_embeddings = (
torch.stack(rays_embeddings, dim=0)
.permute(0, 3, 1, 2)
.contiguous()
.to(device)
)
return rays_embeddings
def forward(self, images):
B, V, C, H, W = images.shape
images = images.view(B * V, C, H, W)
x = self.unet(images)
x = self.conv(x)
x = x.reshape(B, 4, 14, self.splat_size, self.splat_size)
x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14)
pos = self.pos_act(x[..., 0:3])
opacity = self.opacity_act(x[..., 3:4])
scale = self.scale_act(x[..., 4:7])
rotation = self.rot_act(x[..., 7:11])
rgbs = self.rgb_act(x[..., 11:])
q = torch.tensor([0, 0, 1, 0], dtype=pos.dtype, device=pos.device)
R = torch.tensor(
[
[-1, 0, 0],
[0, -1, 0],
[0, 0, 1],
],
dtype=pos.dtype,
device=pos.device,
)
pos = torch.matmul(pos, R.T)
def multiply_quat(q1, q2):
w1, x1, y1, z1 = q1.unbind(-1)
w2, x2, y2, z2 = q2.unbind(-1)
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return torch.stack([w, x, y, z], dim=-1)
for i in range(B):
rotation[i, :] = multiply_quat(q, rotation[i, :])
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1)
return gaussians
# =============================================================================
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
# =============================================================================
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
try:
if XFORMERS_ENABLED:
from xformers.ops import memory_efficient_attention, unbind
XFORMERS_AVAILABLE = True
warnings.warn("xFormers is available (Attention)")
else:
warnings.warn("xFormers is disabled (Attention)")
raise ImportError
except ImportError:
XFORMERS_AVAILABLE = False
warnings.warn("xFormers is not available (Attention)")
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
proj_bias: bool = True,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: Tensor) -> Tensor:
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MemEffAttention(Attention):
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
if not XFORMERS_AVAILABLE:
if attn_bias is not None:
raise AssertionError("xFormers is required for using nested tensors")
return super().forward(x)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
q, k, v = unbind(qkv, 2)
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
x = x.reshape([B, N, C])
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttention(nn.Module):
def __init__(
self,
dim: int,
dim_q: int,
dim_k: int,
dim_v: int,
num_heads: int = 8,
qkv_bias: bool = False,
proj_bias: bool = True,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
super().__init__()
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias)
self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias)
self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
B, N, _ = q.shape
M = k.shape[1]
q = self.scale * self.to_q(q).reshape(
B, N, self.num_heads, self.dim // self.num_heads
).permute(0, 2, 1, 3)
k = (
self.to_k(k)
.reshape(B, M, self.num_heads, self.dim // self.num_heads)
.permute(0, 2, 1, 3)
)
v = (
self.to_v(v)
.reshape(B, M, self.num_heads, self.dim // self.num_heads)
.permute(0, 2, 1, 3)
)
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MemEffCrossAttention(CrossAttention):
def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_bias=None) -> Tensor:
if not XFORMERS_AVAILABLE:
if attn_bias is not None:
raise AssertionError("xFormers is required for using nested tensors")
return super().forward(q, k, v)
B, N, _ = q.shape
M = k.shape[1]
q = self.scale * self.to_q(q).reshape(
B, N, self.num_heads, self.dim // self.num_heads
)
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads)
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads)
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
x = x.reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
# =============================================================================
# End of xFormers
class MVAttention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
proj_bias: bool = True,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
groups: int = 32,
eps: float = 1e-5,
residual: bool = True,
skip_scale: float = 1,
num_frames: int = 4,
):
super().__init__()
self.residual = residual
self.skip_scale = skip_scale
self.num_frames = num_frames
self.norm = nn.GroupNorm(
num_groups=groups, num_channels=dim, eps=eps, affine=True
)
self.attn = MemEffAttention(
dim, num_heads, qkv_bias, proj_bias, attn_drop, proj_drop
)
def forward(self, x):
BV, C, H, W = x.shape
B = BV // self.num_frames
res = x
x = self.norm(x)
x = (
x.reshape(B, self.num_frames, C, H, W)
.permute(0, 1, 3, 4, 2)
.reshape(B, -1, C)
)
x = self.attn(x)
x = (
x.reshape(B, self.num_frames, H, W, C)
.permute(0, 1, 4, 2, 3)
.reshape(BV, C, H, W)
)
if self.residual:
x = (x + res) * self.skip_scale
return x
class ResnetBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
resample: Literal["default", "up", "down"] = "default",
groups: int = 32,
eps: float = 1e-5,
skip_scale: float = 1,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.skip_scale = skip_scale
self.norm1 = nn.GroupNorm(
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.norm2 = nn.GroupNorm(
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.act = F.silu
self.resample = None
if resample == "up":
self.resample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
elif resample == "down":
self.resample = nn.AvgPool2d(kernel_size=2, stride=2)
self.shortcut = nn.Identity()
if self.in_channels != self.out_channels:
self.shortcut = nn.Conv2d(
in_channels, out_channels, kernel_size=1, bias=True
)
def forward(self, x):
res = x
x = self.norm1(x)
x = self.act(x)
if self.resample:
res = self.resample(res)
x = self.resample(x)
x = self.conv1(x)
x = self.norm2(x)
x = self.act(x)
x = self.conv2(x)
x = (x + self.shortcut(res)) * self.skip_scale
return x
class DownBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_layers: int = 1,
downsample: bool = True,
attention: bool = True,
attention_heads: int = 16,
skip_scale: float = 1,
):
super().__init__()
nets = []
attns = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
nets.append(ResnetBlock(in_channels, out_channels, skip_scale=skip_scale))
if attention:
attns.append(
MVAttention(out_channels, attention_heads, skip_scale=skip_scale)
)
else:
attns.append(None)
self.nets = nn.ModuleList(nets)
self.attns = nn.ModuleList(attns)
self.downsample = None
if downsample:
self.downsample = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=2, padding=1
)
def forward(self, x):
xs = []
for attn, net in zip(self.attns, self.nets):
x = net(x)
if attn:
x = attn(x)
xs.append(x)
if self.downsample:
x = self.downsample(x)
xs.append(x)
return x, xs
class MidBlock(nn.Module):
def __init__(
self,
in_channels: int,
num_layers: int = 1,
attention: bool = True,
attention_heads: int = 16,
skip_scale: float = 1,
):
super().__init__()
nets = []
attns = []
nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
for _ in range(num_layers):
nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
if attention:
attns.append(
MVAttention(in_channels, attention_heads, skip_scale=skip_scale)
)
else:
attns.append(None)
self.nets = nn.ModuleList(nets)
self.attns = nn.ModuleList(attns)
def forward(self, x):
x = self.nets[0](x)
for attn, net in zip(self.attns, self.nets[1:]):
if attn:
x = attn(x)
x = net(x)
return x
class UpBlock(nn.Module):
def __init__(
self,
in_channels: int,
prev_out_channels: int,
out_channels: int,
num_layers: int = 1,
upsample: bool = True,
attention: bool = True,
attention_heads: int = 16,
skip_scale: float = 1,
):
super().__init__()
nets = []
attns = []
for i in range(num_layers):
cin = in_channels if i == 0 else out_channels
cskip = prev_out_channels if (i == num_layers - 1) else out_channels
nets.append(ResnetBlock(cin + cskip, out_channels, skip_scale=skip_scale))
if attention:
attns.append(
MVAttention(out_channels, attention_heads, skip_scale=skip_scale)
)
else:
attns.append(None)
self.nets = nn.ModuleList(nets)
self.attns = nn.ModuleList(attns)
self.upsample = None
if upsample:
self.upsample = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x, xs):
for attn, net in zip(self.attns, self.nets):
res_x = xs[-1]
xs = xs[:-1]
x = torch.cat([x, res_x], dim=1)
x = net(x)
if attn:
x = attn(x)
if self.upsample:
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.upsample(x)
return x
class UNet(nn.Module):
def __init__(
self,
in_channels: int = 9,
out_channels: int = 14,
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024),
down_attention: Tuple[bool, ...] = (False, False, False, True, True, True),
mid_attention: bool = True,
up_channels: Tuple[int, ...] = (1024, 1024, 512, 256, 128),
up_attention: Tuple[bool, ...] = (True, True, True, False, False),
layers_per_block: int = 2,
skip_scale: float = np.sqrt(0.5),
):
super().__init__()
self.conv_in = nn.Conv2d(
in_channels, down_channels[0], kernel_size=3, stride=1, padding=1
)
down_blocks = []
cout = down_channels[0]
for i in range(len(down_channels)):
cin = cout
cout = down_channels[i]
down_blocks.append(
DownBlock(
cin,
cout,
num_layers=layers_per_block,
downsample=(i != len(down_channels) - 1),
attention=down_attention[i],
skip_scale=skip_scale,
)
)
self.down_blocks = nn.ModuleList(down_blocks)
self.mid_block = MidBlock(
down_channels[-1], attention=mid_attention, skip_scale=skip_scale
)
up_blocks = []
cout = up_channels[0]
for i in range(len(up_channels)):
cin = cout
cout = up_channels[i]
cskip = down_channels[max(-2 - i, -len(down_channels))]
up_blocks.append(
UpBlock(
cin,
cskip,
cout,
num_layers=layers_per_block + 1,
upsample=(i != len(up_channels) - 1),
attention=up_attention[i],
skip_scale=skip_scale,
)
)
self.up_blocks = nn.ModuleList(up_blocks)
self.norm_out = nn.GroupNorm(
num_channels=up_channels[-1], num_groups=32, eps=1e-5
)
self.conv_out = nn.Conv2d(
up_channels[-1], out_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
x = self.conv_in(x)
xss = [x]
for block in self.down_blocks:
x, xs = block(x)
xss.extend(xs)
x = self.mid_block(x)
for block in self.up_blocks:
xs = xss[-len(block.nets) :]
xss = xss[: -len(block.nets)]
x = block(x, xs)
x = self.norm_out(x)
x = F.silu(x)
x = self.conv_out(x)
return x