|
import math |
|
import numpy as np |
|
from inspect import isfunction |
|
from typing import Optional, Any, List |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
|
|
from diffusers.configuration_utils import ConfigMixin |
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
|
|
|
import xformers |
|
import xformers.ops |
|
|
|
from kiui.cam import orbit_camera |
|
|
|
def get_camera( |
|
num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False, |
|
): |
|
angle_gap = azimuth_span / num_frames |
|
cameras = [] |
|
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap): |
|
|
|
pose = orbit_camera(-elevation, azimuth, radius=1) |
|
|
|
|
|
if blender_coord: |
|
pose[2] *= -1 |
|
pose[[1, 2]] = pose[[2, 1]] |
|
|
|
cameras.append(pose.flatten()) |
|
|
|
if extra_view: |
|
cameras.append(np.zeros_like(cameras[0])) |
|
|
|
return torch.from_numpy(np.stack(cameras, axis=0)).float() |
|
|
|
|
|
def checkpoint(func, inputs, params, flag): |
|
""" |
|
Evaluate a function without caching intermediate activations, allowing for |
|
reduced memory at the expense of extra compute in the backward pass. |
|
:param func: the function to evaluate. |
|
:param inputs: the argument sequence to pass to `func`. |
|
:param params: a sequence of parameters `func` depends on but does not |
|
explicitly take as arguments. |
|
:param flag: if False, disable gradient checkpointing. |
|
""" |
|
if flag: |
|
args = tuple(inputs) + tuple(params) |
|
return CheckpointFunction.apply(func, len(inputs), *args) |
|
else: |
|
return func(*inputs) |
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, run_function, length, *args): |
|
ctx.run_function = run_function |
|
ctx.input_tensors = list(args[:length]) |
|
ctx.input_params = list(args[length:]) |
|
|
|
with torch.no_grad(): |
|
output_tensors = ctx.run_function(*ctx.input_tensors) |
|
return output_tensors |
|
|
|
@staticmethod |
|
def backward(ctx, *output_grads): |
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] |
|
with torch.enable_grad(): |
|
|
|
|
|
|
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] |
|
output_tensors = ctx.run_function(*shallow_copies) |
|
input_grads = torch.autograd.grad( |
|
output_tensors, |
|
ctx.input_tensors + ctx.input_params, |
|
output_grads, |
|
allow_unused=True, |
|
) |
|
del ctx.input_tensors |
|
del ctx.input_params |
|
del output_tensors |
|
return (None, None) + input_grads |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
if not repeat_only: |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32) |
|
/ half |
|
).to(device=timesteps.device) |
|
args = timesteps[:, None] * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat( |
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 |
|
) |
|
else: |
|
embedding = repeat(timesteps, "b -> b d", d=dim) |
|
|
|
return embedding |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D convolution module. |
|
""" |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D average pooling module. |
|
""" |
|
if dims == 1: |
|
return nn.AvgPool1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.AvgPool2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.AvgPool3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def default(val, d): |
|
if val is not None: |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = ( |
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) |
|
if not glu |
|
else GEGLU(dim, inner_dim) |
|
) |
|
|
|
self.net = nn.Sequential( |
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class MemoryEfficientCrossAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
query_dim, |
|
context_dim=None, |
|
heads=8, |
|
dim_head=64, |
|
dropout=0.0, |
|
ip_dim=0, |
|
ip_weight=1, |
|
): |
|
super().__init__() |
|
|
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
self.ip_dim = ip_dim |
|
self.ip_weight = ip_weight |
|
|
|
if self.ip_dim > 0: |
|
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) |
|
) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward(self, x, context=None): |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
|
|
if self.ip_dim > 0: |
|
|
|
token_len = context.shape[1] |
|
context_ip = context[:, -self.ip_dim :, :] |
|
k_ip = self.to_k_ip(context_ip) |
|
v_ip = self.to_v_ip(context_ip) |
|
context = context[:, : (token_len - self.ip_dim), :] |
|
|
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
b, _, _ = q.shape |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
out = xformers.ops.memory_efficient_attention( |
|
q, k, v, attn_bias=None, op=self.attention_op |
|
) |
|
|
|
if self.ip_dim > 0: |
|
k_ip, v_ip = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(k_ip, v_ip), |
|
) |
|
|
|
out_ip = xformers.ops.memory_efficient_attention( |
|
q, k_ip, v_ip, attn_bias=None, op=self.attention_op |
|
) |
|
out = out + self.ip_weight * out_ip |
|
|
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, self.heads, out.shape[1], self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, out.shape[1], self.heads * self.dim_head) |
|
) |
|
return self.to_out(out) |
|
|
|
|
|
class BasicTransformerBlock3D(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
n_heads, |
|
d_head, |
|
context_dim, |
|
dropout=0.0, |
|
gated_ff=True, |
|
checkpoint=True, |
|
ip_dim=0, |
|
ip_weight=1, |
|
): |
|
super().__init__() |
|
|
|
self.attn1 = MemoryEfficientCrossAttention( |
|
query_dim=dim, |
|
context_dim=None, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.attn2 = MemoryEfficientCrossAttention( |
|
query_dim=dim, |
|
context_dim=context_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
|
|
ip_dim=ip_dim, |
|
ip_weight=ip_weight, |
|
) |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
|
|
def forward(self, x, context=None, num_frames=1): |
|
return checkpoint( |
|
self._forward, (x, context, num_frames), self.parameters(), self.checkpoint |
|
) |
|
|
|
def _forward(self, x, context=None, num_frames=1): |
|
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous() |
|
x = self.attn1(self.norm1(x), context=None) + x |
|
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous() |
|
x = self.attn2(self.norm2(x), context=context) + x |
|
x = self.ff(self.norm3(x)) + x |
|
return x |
|
|
|
|
|
class SpatialTransformer3D(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
context_dim, |
|
depth=1, |
|
dropout=0.0, |
|
ip_dim=0, |
|
ip_weight=1, |
|
use_checkpoint=True, |
|
): |
|
super().__init__() |
|
|
|
if not isinstance(context_dim, list): |
|
context_dim = [context_dim] |
|
|
|
self.in_channels = in_channels |
|
|
|
inner_dim = n_heads * d_head |
|
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock3D( |
|
inner_dim, |
|
n_heads, |
|
d_head, |
|
context_dim=context_dim[d], |
|
dropout=dropout, |
|
checkpoint=use_checkpoint, |
|
ip_dim=ip_dim, |
|
ip_weight=ip_weight, |
|
) |
|
for d in range(depth) |
|
] |
|
) |
|
|
|
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) |
|
|
|
|
|
def forward(self, x, context=None, num_frames=1): |
|
|
|
if not isinstance(context, list): |
|
context = [context] |
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
x = rearrange(x, "b c h w -> b (h w) c").contiguous() |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
x = block(x, context=context[i], num_frames=num_frames) |
|
x = self.proj_out(x) |
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() |
|
|
|
return x + x_in |
|
|
|
|
|
class PerceiverAttention(nn.Module): |
|
def __init__(self, *, dim, dim_head=64, heads=8): |
|
super().__init__() |
|
self.scale = dim_head ** -0.5 |
|
self.dim_head = dim_head |
|
self.heads = heads |
|
inner_dim = dim_head * heads |
|
|
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, dim, bias=False) |
|
|
|
def forward(self, x, latents): |
|
""" |
|
Args: |
|
x (torch.Tensor): image features |
|
shape (b, n1, D) |
|
latent (torch.Tensor): latent features |
|
shape (b, n2, D) |
|
""" |
|
x = self.norm1(x) |
|
latents = self.norm2(latents) |
|
|
|
b, l, _ = latents.shape |
|
|
|
q = self.to_q(latents) |
|
kv_input = torch.cat((x, latents), dim=-2) |
|
k, v = self.to_kv(kv_input).chunk(2, dim=-1) |
|
|
|
q, k, v = map( |
|
lambda t: t.reshape(b, t.shape[1], self.heads, -1) |
|
.transpose(1, 2) |
|
.reshape(b, self.heads, t.shape[1], -1) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) |
|
weight = (q * scale) @ (k * scale).transpose(-2, -1) |
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
out = weight @ v |
|
|
|
out = out.permute(0, 2, 1, 3).reshape(b, l, -1) |
|
|
|
return self.to_out(out) |
|
|
|
|
|
class Resampler(nn.Module): |
|
def __init__( |
|
self, |
|
dim=1024, |
|
depth=8, |
|
dim_head=64, |
|
heads=16, |
|
num_queries=8, |
|
embedding_dim=768, |
|
output_dim=1024, |
|
ff_mult=4, |
|
): |
|
super().__init__() |
|
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5) |
|
self.proj_in = nn.Linear(embedding_dim, dim) |
|
self.proj_out = nn.Linear(dim, output_dim) |
|
self.norm_out = nn.LayerNorm(output_dim) |
|
|
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.ModuleList( |
|
[ |
|
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), |
|
nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, dim * ff_mult, bias=False), |
|
nn.GELU(), |
|
nn.Linear(dim * ff_mult, dim, bias=False), |
|
) |
|
] |
|
) |
|
) |
|
|
|
def forward(self, x): |
|
latents = self.latents.repeat(x.size(0), 1, 1) |
|
x = self.proj_in(x) |
|
for attn, ff in self.layers: |
|
latents = attn(x, latents) + latents |
|
latents = ff(latents) + latents |
|
|
|
latents = self.proj_out(latents) |
|
return self.norm_out(latents) |
|
|
|
|
|
class CondSequential(nn.Sequential): |
|
""" |
|
A sequential module that passes timestep embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
|
|
def forward(self, x, emb, context=None, num_frames=1): |
|
for layer in self: |
|
if isinstance(layer, ResBlock): |
|
x = layer(x, emb) |
|
elif isinstance(layer, SpatialTransformer3D): |
|
x = layer(x, context, num_frames=num_frames) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class Upsample(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
if use_conv: |
|
self.conv = conv_nd( |
|
dims, self.channels, self.out_channels, 3, padding=padding |
|
) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
x = F.interpolate( |
|
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" |
|
) |
|
else: |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd( |
|
dims, |
|
self.channels, |
|
self.out_channels, |
|
3, |
|
stride=stride, |
|
padding=padding, |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param use_checkpoint: if True, use gradient checkpointing on this module. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
use_checkpoint=False, |
|
up=False, |
|
down=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_checkpoint = use_checkpoint |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
|
|
self.in_layers = nn.Sequential( |
|
nn.GroupNorm(32, channels), |
|
nn.SiLU(), |
|
conv_nd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
nn.GroupNorm(32, self.out_channels), |
|
nn.SiLU(), |
|
nn.Dropout(p=dropout), |
|
zero_module( |
|
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) |
|
), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = conv_nd( |
|
dims, channels, self.out_channels, 3, padding=1 |
|
) |
|
else: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) |
|
|
|
def forward(self, x, emb): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
:param x: an [N x C x ...] Tensor of features. |
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
return checkpoint( |
|
self._forward, (x, emb), self.parameters(), self.use_checkpoint |
|
) |
|
|
|
def _forward(self, x, emb): |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = torch.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
|
|
class MultiViewUNetModel(ModelMixin, ConfigMixin): |
|
""" |
|
The full multi-view UNet model with attention, timestep embedding and camera embedding. |
|
:param in_channels: channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param attention_resolutions: a collection of downsample rates at which |
|
attention will take place. May be a set, list, or tuple. |
|
For example, if this contains 4, then at 4x downsampling, attention |
|
will be used. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param num_classes: if specified (as an int), then this model will be |
|
class-conditional with `num_classes` classes. |
|
:param use_checkpoint: use gradient checkpointing to reduce memory usage. |
|
:param num_heads: the number of attention heads in each attention layer. |
|
:param num_heads_channels: if specified, ignore num_heads and instead use |
|
a fixed channel width per attention head. |
|
:param num_heads_upsample: works with num_heads to set a different number |
|
of heads for upsampling. Deprecated. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
:param use_new_attention_order: use a different attention pattern for potentially |
|
increased efficiency. |
|
:param camera_dim: dimensionality of camera input. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
num_classes=None, |
|
use_checkpoint=False, |
|
num_heads=-1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
transformer_depth=1, |
|
context_dim=None, |
|
n_embed=None, |
|
num_attention_blocks=None, |
|
adm_in_channels=None, |
|
camera_dim=None, |
|
ip_dim=0, |
|
ip_weight=1.0, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
assert context_dim is not None |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
if num_heads == -1: |
|
assert ( |
|
num_head_channels != -1 |
|
), "Either num_heads or num_head_channels has to be set" |
|
|
|
if num_head_channels == -1: |
|
assert ( |
|
num_heads != -1 |
|
), "Either num_heads or num_head_channels has to be set" |
|
|
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
if isinstance(num_res_blocks, int): |
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks] |
|
else: |
|
if len(num_res_blocks) != len(channel_mult): |
|
raise ValueError( |
|
"provide num_res_blocks either as an int (globally constant) or " |
|
"as a list/tuple (per-level) with the same length as channel_mult" |
|
) |
|
self.num_res_blocks = num_res_blocks |
|
|
|
if num_attention_blocks is not None: |
|
assert len(num_attention_blocks) == len(self.num_res_blocks) |
|
assert all( |
|
map( |
|
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], |
|
range(len(num_attention_blocks)), |
|
) |
|
) |
|
print( |
|
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " |
|
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " |
|
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " |
|
f"attention will still not be set." |
|
) |
|
|
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.num_classes = num_classes |
|
self.use_checkpoint = use_checkpoint |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
self.predict_codebook_ids = n_embed is not None |
|
|
|
self.ip_dim = ip_dim |
|
self.ip_weight = ip_weight |
|
|
|
if self.ip_dim > 0: |
|
self.image_embed = Resampler( |
|
dim=context_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=12, |
|
num_queries=ip_dim, |
|
embedding_dim=1280, |
|
output_dim=context_dim, |
|
ff_mult=4, |
|
) |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
nn.Linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
if camera_dim is not None: |
|
time_embed_dim = model_channels * 4 |
|
self.camera_embed = nn.Sequential( |
|
nn.Linear(camera_dim, time_embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
if self.num_classes is not None: |
|
if isinstance(self.num_classes, int): |
|
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim) |
|
elif self.num_classes == "continuous": |
|
|
|
self.label_emb = nn.Linear(1, time_embed_dim) |
|
elif self.num_classes == "sequential": |
|
assert adm_in_channels is not None |
|
self.label_emb = nn.Sequential( |
|
nn.Sequential( |
|
nn.Linear(adm_in_channels, time_embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(time_embed_dim, time_embed_dim), |
|
) |
|
) |
|
else: |
|
raise ValueError() |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
CondSequential( |
|
conv_nd(dims, in_channels, model_channels, 3, padding=1) |
|
) |
|
] |
|
) |
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for nr in range(self.num_res_blocks[level]): |
|
layers: List[Any] = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = mult * model_channels |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
|
|
if num_attention_blocks is None or nr < num_attention_blocks[level]: |
|
layers.append( |
|
SpatialTransformer3D( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
context_dim=context_dim, |
|
depth=transformer_depth, |
|
use_checkpoint=use_checkpoint, |
|
ip_dim=self.ip_dim, |
|
ip_weight=self.ip_weight, |
|
) |
|
) |
|
self.input_blocks.append(CondSequential(*layers)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
CondSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
|
|
self.middle_block = CondSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
SpatialTransformer3D( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
context_dim=context_dim, |
|
depth=transformer_depth, |
|
use_checkpoint=use_checkpoint, |
|
ip_dim=self.ip_dim, |
|
ip_weight=self.ip_weight, |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self._feature_size += ch |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(self.num_res_blocks[level] + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
ResBlock( |
|
ch + ich, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=model_channels * mult, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = model_channels * mult |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
|
|
if num_attention_blocks is None or i < num_attention_blocks[level]: |
|
layers.append( |
|
SpatialTransformer3D( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
context_dim=context_dim, |
|
depth=transformer_depth, |
|
use_checkpoint=use_checkpoint, |
|
ip_dim=self.ip_dim, |
|
ip_weight=self.ip_weight, |
|
) |
|
) |
|
if level and i == self.num_res_blocks[level]: |
|
out_ch = ch |
|
layers.append( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
ds //= 2 |
|
self.output_blocks.append(CondSequential(*layers)) |
|
self._feature_size += ch |
|
|
|
self.out = nn.Sequential( |
|
nn.GroupNorm(32, ch), |
|
nn.SiLU(), |
|
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), |
|
) |
|
if self.predict_codebook_ids: |
|
self.id_predictor = nn.Sequential( |
|
nn.GroupNorm(32, ch), |
|
conv_nd(dims, model_channels, n_embed, 1), |
|
|
|
) |
|
|
|
def forward( |
|
self, |
|
x, |
|
timesteps=None, |
|
context=None, |
|
y=None, |
|
camera=None, |
|
num_frames=1, |
|
ip=None, |
|
ip_img=None, |
|
**kwargs, |
|
): |
|
""" |
|
Apply the model to an input batch. |
|
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views). |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param context: conditioning plugged in via crossattn |
|
:param y: an [N] Tensor of labels, if class-conditional. |
|
:param num_frames: a integer indicating number of frames for tensor reshaping. |
|
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views). |
|
""" |
|
assert ( |
|
x.shape[0] % num_frames == 0 |
|
), "input batch size must be dividable by num_frames!" |
|
assert (y is not None) == ( |
|
self.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional" |
|
|
|
hs = [] |
|
|
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) |
|
|
|
emb = self.time_embed(t_emb) |
|
|
|
if self.num_classes is not None: |
|
assert y is not None |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
|
|
if camera is not None: |
|
emb = emb + self.camera_embed(camera) |
|
|
|
|
|
if self.ip_dim > 0: |
|
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img |
|
ip_emb = self.image_embed(ip) |
|
context = torch.cat((context, ip_emb), 1) |
|
|
|
h = x |
|
for module in self.input_blocks: |
|
h = module(h, emb, context, num_frames=num_frames) |
|
hs.append(h) |
|
h = self.middle_block(h, emb, context, num_frames=num_frames) |
|
for module in self.output_blocks: |
|
h = torch.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb, context, num_frames=num_frames) |
|
h = h.type(x.dtype) |
|
if self.predict_codebook_ids: |
|
return self.id_predictor(h) |
|
else: |
|
return self.out(h) |