dyvapandhu
commited on
Commit
•
ef4f836
1
Parent(s):
edbe291
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: vit-molecul
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# vit-molecul
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5737
|
22 |
+
- Accuracy: 0.71
|
23 |
+
- F1: 0.7086
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 3e-06
|
43 |
+
- train_batch_size: 50
|
44 |
+
- eval_batch_size: 50
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 20
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
54 |
+
| 0.723 | 1.0 | 8 | 0.6790 | 0.61 | 0.6096 |
|
55 |
+
| 0.6915 | 2.0 | 16 | 0.6661 | 0.62 | 0.5924 |
|
56 |
+
| 0.6689 | 3.0 | 24 | 0.6470 | 0.69 | 0.6892 |
|
57 |
+
| 0.6517 | 4.0 | 32 | 0.6356 | 0.64 | 0.6377 |
|
58 |
+
| 0.6368 | 5.0 | 40 | 0.6289 | 0.72 | 0.7199 |
|
59 |
+
| 0.621 | 6.0 | 48 | 0.6217 | 0.73 | 0.7293 |
|
60 |
+
| 0.6061 | 7.0 | 56 | 0.6197 | 0.69 | 0.6862 |
|
61 |
+
| 0.5924 | 8.0 | 64 | 0.6087 | 0.73 | 0.7293 |
|
62 |
+
| 0.5767 | 9.0 | 72 | 0.6003 | 0.72 | 0.7199 |
|
63 |
+
| 0.5633 | 10.0 | 80 | 0.5953 | 0.72 | 0.7196 |
|
64 |
+
| 0.5491 | 11.0 | 88 | 0.5885 | 0.72 | 0.7199 |
|
65 |
+
| 0.5351 | 12.0 | 96 | 0.5869 | 0.71 | 0.7100 |
|
66 |
+
| 0.5239 | 13.0 | 104 | 0.5867 | 0.7 | 0.6995 |
|
67 |
+
| 0.5118 | 14.0 | 112 | 0.5804 | 0.71 | 0.7100 |
|
68 |
+
| 0.502 | 15.0 | 120 | 0.5752 | 0.71 | 0.7100 |
|
69 |
+
| 0.4942 | 16.0 | 128 | 0.5738 | 0.72 | 0.7199 |
|
70 |
+
| 0.4885 | 17.0 | 136 | 0.5771 | 0.71 | 0.7086 |
|
71 |
+
| 0.4831 | 18.0 | 144 | 0.5751 | 0.71 | 0.7086 |
|
72 |
+
| 0.4793 | 19.0 | 152 | 0.5743 | 0.71 | 0.7086 |
|
73 |
+
| 0.4774 | 20.0 | 160 | 0.5737 | 0.71 | 0.7086 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.31.0
|
79 |
+
- Pytorch 2.0.1+cu117
|
80 |
+
- Datasets 2.14.1
|
81 |
+
- Tokenizers 0.13.3
|