update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: legal-NER
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# legal-NER
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0068
|
23 |
+
- Accuracy: 0.9990
|
24 |
+
- Precision: 0.9931
|
25 |
+
- Recall: 0.9944
|
26 |
+
- F1: 0.9938
|
27 |
+
- Classification Report: precision recall f1-score support
|
28 |
+
|
29 |
+
LOC 1.00 1.00 1.00 1837
|
30 |
+
MISC 0.98 0.98 0.98 922
|
31 |
+
ORG 1.00 0.99 0.99 1341
|
32 |
+
PER 1.00 1.00 1.00 1842
|
33 |
+
|
34 |
+
micro avg 0.99 0.99 0.99 5942
|
35 |
+
macro avg 0.99 0.99 0.99 5942
|
36 |
+
weighted avg 0.99 0.99 0.99 5942
|
37 |
+
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 16
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 5
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
68 |
+
| 0.1501 | 1.0 | 217 | 0.0704 | 0.9810 | 0.8615 | 0.8901 | 0.8756 | precision recall f1-score support
|
69 |
+
|
70 |
+
LOC 0.86 0.95 0.91 1837
|
71 |
+
MISC 0.74 0.70 0.72 922
|
72 |
+
ORG 0.80 0.82 0.81 1341
|
73 |
+
PER 0.97 0.97 0.97 1842
|
74 |
+
|
75 |
+
micro avg 0.86 0.89 0.88 5942
|
76 |
+
macro avg 0.84 0.86 0.85 5942
|
77 |
+
weighted avg 0.86 0.89 0.87 5942
|
78 |
+
|
|
79 |
+
| 0.0682 | 2.0 | 434 | 0.0266 | 0.9929 | 0.9513 | 0.9631 | 0.9572 | precision recall f1-score support
|
80 |
+
|
81 |
+
LOC 0.98 0.98 0.98 1837
|
82 |
+
MISC 0.88 0.91 0.89 922
|
83 |
+
ORG 0.92 0.96 0.94 1341
|
84 |
+
PER 0.99 0.97 0.98 1842
|
85 |
+
|
86 |
+
micro avg 0.95 0.96 0.96 5942
|
87 |
+
macro avg 0.94 0.96 0.95 5942
|
88 |
+
weighted avg 0.95 0.96 0.96 5942
|
89 |
+
|
|
90 |
+
| 0.0362 | 3.0 | 651 | 0.0137 | 0.9970 | 0.9776 | 0.9850 | 0.9813 | precision recall f1-score support
|
91 |
+
|
92 |
+
LOC 0.98 1.00 0.99 1837
|
93 |
+
MISC 0.94 0.95 0.94 922
|
94 |
+
ORG 0.98 0.98 0.98 1341
|
95 |
+
PER 0.99 1.00 1.00 1842
|
96 |
+
|
97 |
+
micro avg 0.98 0.99 0.98 5942
|
98 |
+
macro avg 0.97 0.98 0.98 5942
|
99 |
+
weighted avg 0.98 0.99 0.98 5942
|
100 |
+
|
|
101 |
+
| 0.0209 | 4.0 | 868 | 0.0079 | 0.9986 | 0.9894 | 0.9918 | 0.9906 | precision recall f1-score support
|
102 |
+
|
103 |
+
LOC 0.99 1.00 1.00 1837
|
104 |
+
MISC 0.98 0.97 0.97 922
|
105 |
+
ORG 0.99 0.99 0.99 1341
|
106 |
+
PER 1.00 1.00 1.00 1842
|
107 |
+
|
108 |
+
micro avg 0.99 0.99 0.99 5942
|
109 |
+
macro avg 0.99 0.99 0.99 5942
|
110 |
+
weighted avg 0.99 0.99 0.99 5942
|
111 |
+
|
|
112 |
+
| 0.0143 | 5.0 | 1085 | 0.0068 | 0.9990 | 0.9931 | 0.9944 | 0.9938 | precision recall f1-score support
|
113 |
+
|
114 |
+
LOC 1.00 1.00 1.00 1837
|
115 |
+
MISC 0.98 0.98 0.98 922
|
116 |
+
ORG 1.00 0.99 0.99 1341
|
117 |
+
PER 1.00 1.00 1.00 1842
|
118 |
+
|
119 |
+
micro avg 0.99 0.99 0.99 5942
|
120 |
+
macro avg 0.99 0.99 0.99 5942
|
121 |
+
weighted avg 0.99 0.99 0.99 5942
|
122 |
+
|
|
123 |
+
|
124 |
+
|
125 |
+
### Framework versions
|
126 |
+
|
127 |
+
- Transformers 4.30.2
|
128 |
+
- Pytorch 2.0.0
|
129 |
+
- Datasets 2.1.0
|
130 |
+
- Tokenizers 0.13.3
|