easwar03 commited on
Commit
53f7621
1 Parent(s): 455ea06

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -0
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: legal-NER
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # legal-NER
19
+
20
+ This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0068
23
+ - Accuracy: 0.9990
24
+ - Precision: 0.9931
25
+ - Recall: 0.9944
26
+ - F1: 0.9938
27
+ - Classification Report: precision recall f1-score support
28
+
29
+ LOC 1.00 1.00 1.00 1837
30
+ MISC 0.98 0.98 0.98 922
31
+ ORG 1.00 0.99 0.99 1341
32
+ PER 1.00 1.00 1.00 1842
33
+
34
+ micro avg 0.99 0.99 0.99 5942
35
+ macro avg 0.99 0.99 0.99 5942
36
+ weighted avg 0.99 0.99 0.99 5942
37
+
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 16
58
+ - eval_batch_size: 16
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 5
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
68
+ | 0.1501 | 1.0 | 217 | 0.0704 | 0.9810 | 0.8615 | 0.8901 | 0.8756 | precision recall f1-score support
69
+
70
+ LOC 0.86 0.95 0.91 1837
71
+ MISC 0.74 0.70 0.72 922
72
+ ORG 0.80 0.82 0.81 1341
73
+ PER 0.97 0.97 0.97 1842
74
+
75
+ micro avg 0.86 0.89 0.88 5942
76
+ macro avg 0.84 0.86 0.85 5942
77
+ weighted avg 0.86 0.89 0.87 5942
78
+ |
79
+ | 0.0682 | 2.0 | 434 | 0.0266 | 0.9929 | 0.9513 | 0.9631 | 0.9572 | precision recall f1-score support
80
+
81
+ LOC 0.98 0.98 0.98 1837
82
+ MISC 0.88 0.91 0.89 922
83
+ ORG 0.92 0.96 0.94 1341
84
+ PER 0.99 0.97 0.98 1842
85
+
86
+ micro avg 0.95 0.96 0.96 5942
87
+ macro avg 0.94 0.96 0.95 5942
88
+ weighted avg 0.95 0.96 0.96 5942
89
+ |
90
+ | 0.0362 | 3.0 | 651 | 0.0137 | 0.9970 | 0.9776 | 0.9850 | 0.9813 | precision recall f1-score support
91
+
92
+ LOC 0.98 1.00 0.99 1837
93
+ MISC 0.94 0.95 0.94 922
94
+ ORG 0.98 0.98 0.98 1341
95
+ PER 0.99 1.00 1.00 1842
96
+
97
+ micro avg 0.98 0.99 0.98 5942
98
+ macro avg 0.97 0.98 0.98 5942
99
+ weighted avg 0.98 0.99 0.98 5942
100
+ |
101
+ | 0.0209 | 4.0 | 868 | 0.0079 | 0.9986 | 0.9894 | 0.9918 | 0.9906 | precision recall f1-score support
102
+
103
+ LOC 0.99 1.00 1.00 1837
104
+ MISC 0.98 0.97 0.97 922
105
+ ORG 0.99 0.99 0.99 1341
106
+ PER 1.00 1.00 1.00 1842
107
+
108
+ micro avg 0.99 0.99 0.99 5942
109
+ macro avg 0.99 0.99 0.99 5942
110
+ weighted avg 0.99 0.99 0.99 5942
111
+ |
112
+ | 0.0143 | 5.0 | 1085 | 0.0068 | 0.9990 | 0.9931 | 0.9944 | 0.9938 | precision recall f1-score support
113
+
114
+ LOC 1.00 1.00 1.00 1837
115
+ MISC 0.98 0.98 0.98 922
116
+ ORG 1.00 0.99 0.99 1341
117
+ PER 1.00 1.00 1.00 1842
118
+
119
+ micro avg 0.99 0.99 0.99 5942
120
+ macro avg 0.99 0.99 0.99 5942
121
+ weighted avg 0.99 0.99 0.99 5942
122
+ |
123
+
124
+
125
+ ### Framework versions
126
+
127
+ - Transformers 4.30.2
128
+ - Pytorch 2.0.0
129
+ - Datasets 2.1.0
130
+ - Tokenizers 0.13.3