easwar03 commited on
Commit
91e1473
1 Parent(s): 34f0f72

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ model-index:
10
+ - name: legal-base-bert-NER
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # legal-base-bert-NER
18
+
19
+ This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0195
22
+ - Precision: 0.9678
23
+ - Recall: 0.9748
24
+ - F1: 0.9712
25
+ - Classification Report: precision recall f1-score support
26
+
27
+ LOC 0.98 0.99 0.98 1837
28
+ MISC 0.92 0.93 0.93 922
29
+ ORG 0.96 0.97 0.96 1341
30
+ PER 0.99 0.99 0.99 1842
31
+
32
+ micro avg 0.97 0.97 0.97 5942
33
+ macro avg 0.96 0.97 0.97 5942
34
+ weighted avg 0.97 0.97 0.97 5942
35
+
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 3
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Classification Report |
65
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
66
+ | 0.0423 | 2.3 | 500 | 0.0195 | 0.9678 | 0.9748 | 0.9712 | precision recall f1-score support
67
+
68
+ LOC 0.98 0.99 0.98 1837
69
+ MISC 0.92 0.93 0.93 922
70
+ ORG 0.96 0.97 0.96 1341
71
+ PER 0.99 0.99 0.99 1842
72
+
73
+ micro avg 0.97 0.97 0.97 5942
74
+ macro avg 0.96 0.97 0.97 5942
75
+ weighted avg 0.97 0.97 0.97 5942
76
+ |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.30.2
82
+ - Pytorch 2.0.0
83
+ - Datasets 2.1.0
84
+ - Tokenizers 0.13.3