360VL_PHI / modeling_360vl.py
Secur3's picture
minor sys prompt update
d5b0260
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModelForCausalLM, \
LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from PIL import Image
from abc import ABC, abstractmethod
import os
import math
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
from functools import partial
from transformers.configuration_utils import PretrainedConfig
from timm.models.layers import LayerNorm, LayerNorm2d
from timm.models.regnet import RegStage
from torch.nn import functional as F
import math
from einops import rearrange
CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."
# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
class CLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
if not delay_load:
self.load_model()
else:
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
def load_model(self):
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(f'Unexpected select feature: {self.select_feature}')
return image_features
@torch.no_grad()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
def build_vision_tower(vision_tower_cfg, **kwargs):
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
is_absolute_path_exists = os.path.exists(vision_tower)
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"):
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
raise ValueError(f'Unknown vision tower: {vision_tower}')
class HoneybeeVisualProjectorConfig(PretrainedConfig):
model_type = "mllm_visual_projector"
def __init__(
self,
projector_type: str = "resampler",
hidden_size: int = 1024, #
num_hidden_layers: int = 6, #
num_attention_heads: int = 16, #
intermediate_size: int = 4096, #
attention_probs_dropout_prob: float = 0.1, #
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-6, #
encoder_hidden_size: int = 1024, # This will be overwritten by vision_model's hidden_size
pos_emb=False,
feature_layer_index=-1, # vision feature layer index; -1: last layer
num_eos_tokens=1,
use_cls=True,
prenorm=False,
**kwargs,
):
super().__init__(**kwargs)
self.projector_type = projector_type
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.encoder_hidden_size = encoder_hidden_size
self.pos_emb = pos_emb
self.feature_layer_index = feature_layer_index
self.num_eos_tokens = num_eos_tokens
self.use_cls = use_cls
self.prenorm = prenorm
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the visual_projector config dict if we are loading from HoneybeeConfig
if config_dict.get("model_type") == "QH_360VL":
config_dict = config_dict["visual_projector_config"]
return cls.from_dict(config_dict, **kwargs)
def build_pos_embeds(
config: HoneybeeVisualProjectorConfig, num_input_tokens: int, vision_hidden_size: int
):
# pos emb
# true
if config.pos_emb:
pos_emb = torch.nn.Parameter(torch.zeros(1, num_input_tokens, vision_hidden_size))
nn.init.trunc_normal_(pos_emb, mean=0.0, std=0.02)
else:
pos_emb = None
return pos_emb
def build_eos_tokens(config: HoneybeeVisualProjectorConfig, output_hidden_size: int):
# think tokens
num_eos_tokens = config.num_eos_tokens
# 0
if num_eos_tokens:
eos_tokens = torch.nn.Parameter(torch.randn(1, num_eos_tokens, output_hidden_size))
nn.init.trunc_normal_(eos_tokens, mean=0.0, std=config.initializer_range)
else:
eos_tokens = None
return eos_tokens
def build_prenorm(config: HoneybeeVisualProjectorConfig):
# false
if config.prenorm:
prenorm = LayerNorm(config.encoder_hidden_size)
else:
prenorm = None
return prenorm
def build_mlp(depth, hidden_size, output_hidden_size):
layers = [nn.Linear(hidden_size, output_hidden_size)]
for _ in range(1, depth):
layers.append(nn.SiLU())
layers.append(nn.Linear(output_hidden_size, output_hidden_size))
return nn.Sequential(*layers)
def get_abs_pos(abs_pos, tgt_size):
# abs_pos: L, C
# tgt_size: M
# return: M, C
# 16,24
src_size = int(math.sqrt(abs_pos.size(1)))
# 32,48
tgt_size = int(math.sqrt(tgt_size))
dtype = abs_pos.dtype
if src_size != tgt_size:
return F.interpolate(
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
size=(tgt_size, tgt_size),
mode="bicubic",
align_corners=False,
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
else:
return abs_pos
class Projector(nn.Module):
"""Base projector class"""
def __init__(
self,
config: HoneybeeVisualProjectorConfig,
num_input_tokens: int,
output_hidden_size: int,
):
super().__init__()
self.config = config
self.num_input_tokens = num_input_tokens
self.output_hidden_size = output_hidden_size
# think tokens
self.eos_tokens = build_eos_tokens(config, output_hidden_size)
# pos emb
self.pos_emb = build_pos_embeds(config, num_input_tokens, config.encoder_hidden_size)
self.prenorm = build_prenorm(config)
self.build_net()
def build_net(self):
raise NotImplementedError()
def _forward(self, x):
raise NotImplementedError()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x: (B, L, encoder_hidden_size) tensor from the visual backbone (CLIP visual encoder), including cls token.
"""
if self.prenorm is not None:
x = self.prenorm(x)
if self.pos_emb is not None:
# self.pos_emb = self.pos_emb[:,1:]
pos_emb = get_abs_pos(self.pos_emb[:,1:], x.size(1))
pos_emb = pos_emb.to(device=x.device)
x += pos_emb
x = self._forward(x) # (B, L, output_hidden_size)
B = x.size(0)
if self.eos_tokens is not None:
x = torch.cat([x, self.eos_tokens.expand(B, -1, -1)], dim=1)
return x
class ConvProjector(Projector):
def _forward(self, x):
# x: [B, L, dim]
# x = x[:, 1:] # drop cls token and 2d forward
hw = int(x.size(1) ** 0.5)
x = rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw)
x = self.net(x)
x = rearrange(x, "b d h w -> b (h w) d")
x = self.readout(x)
return x
class CAbstractor(ConvProjector):
"""C-Abstractor"""
def build_net(self):
encoder_hidden_size = self.config.encoder_hidden_size
hidden_size = self.config.hidden_size
output_hidden_size = self.output_hidden_size
depth = self.config.depth
mlp_depth = self.config.mlp_depth
n_queries = self.config.num_queries
assert (n_queries ** 0.5).is_integer(), "n_queries must be square number"
hw = int(n_queries ** 0.5)
# RegBlock = ResBlock + SE
RegBlock = partial(
RegStage,
stride=1,
dilation=1,
act_layer=nn.SiLU,
norm_layer=LayerNorm2d,
)
s1 = RegBlock(
depth,
encoder_hidden_size,
hidden_size,
)
sampler = nn.AdaptiveAvgPool2d((hw, hw))
s2 = RegBlock(
depth,
hidden_size,
hidden_size,
)
self.net = nn.Sequential(s1, sampler, s2)
self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size)
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": 'identity'}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
def build_honeybee_projector(config, projector_type, num_tokens,lm_hidden_size):
"""Build projector (abstractor) and query_tokens (optionally for resampler)"""
proj_config = config
proj_type = projector_type
num_tokens = num_tokens
output_hidden_size = lm_hidden_size # LM hidden size
abstractor = {
"c-abs": CAbstractor,
}[
proj_type
](proj_config, num_tokens, output_hidden_size)
return abstractor
def build_vision_projector(config, delay_load=False, **kwargs):
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == 'linear':
return nn.Linear(config.mm_hidden_size, config.hidden_size)
if projector_type == 'c-abs':
local_config_path = config.mm_projector_config
honeybee_config = HoneybeeVisualProjectorConfig.from_pretrained(local_config_path)
num_tokens = config.mm_num_tokens
lm_hidden_size = config.hidden_size
abstractor = build_honeybee_projector(honeybee_config,projector_type,num_tokens,lm_hidden_size)
return abstractor
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
return nn.Sequential(*modules)
if projector_type == 'identity':
return IdentityMap()
raise ValueError(f'Unknown projector type: {projector_type}')
class QH360_VL_MetaModel:
def __init__(self, config):
super(QH360_VL_MetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector_ctt = build_vision_projector(config)
self.mm_projector_ori = build_vision_projector(config)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
class QH360_VL_MetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features = self.get_model().mm_projector(image_features)
return image_features
def encode_images_noprojector(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features = image_features.detach()
return image_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, attention_mask, past_key_values, labels, images
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
return input_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
image_features = []
for image in images:
if image.ndim == 3:
image_features.append(self.encode_images(image.unsqueeze(0)).squeeze(0))
elif image.ndim == 4:
#NOTE cc-plan
temp_feats = self.encode_images_noprojector(image)
src_size = int(math.sqrt(temp_feats.shape[1]))
temp_feats = temp_feats.reshape(temp_feats.shape[0]//5,5,-1, temp_feats.shape[-1])
x1 = temp_feats[:,4,:,:]
x = temp_feats[:,:4,:,:]
x = x.reshape(x.shape[0], -1, src_size, src_size, x.shape[-1])
x = x.transpose(1,2).reshape(x.shape[0], src_size,2,2, src_size, x.shape[-1])
x = x.transpose(1,2).reshape(x.shape[0], -1, x.shape[-1])
x1 = self.get_model().mm_projector_ori(x1).squeeze(0)
x = self.get_model().mm_projector_ctt(x).squeeze(0)
temp_feats_all = torch.cat([x,x1],dim=0)
image_features.append(temp_feats_all)
else:
image_features = self.encode_images(images)
new_input_embeds = []
new_labels = [] if labels is not None else None
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
# FIXME: this is a hacky fix, for deepspeed zero3 to work
half_len = cur_input_ids.shape[0] // 2
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
new_input_embeds.append(cur_input_embeds)
if labels is not None:
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
cur_new_input_embeds = []
if labels is not None:
cur_labels = labels[batch_idx]
cur_new_labels = []
assert cur_labels.shape == cur_input_ids.shape
while image_token_indices.numel() > 0:
cur_image_features = image_features[cur_image_idx]
image_token_start = image_token_indices[0]
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
cur_labels = cur_labels[image_token_start+2:]
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_labels = cur_labels[image_token_start+1:]
cur_image_idx += 1
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_input_ids = cur_input_ids[image_token_start+2:]
else:
cur_input_ids = cur_input_ids[image_token_start+1:]
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
if cur_input_ids.numel() > 0:
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
if labels is not None:
cur_new_labels.append(cur_labels)
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
new_input_embeds.append(cur_new_input_embeds)
if labels is not None:
cur_new_labels = torch.cat(cur_new_labels, dim=0)
new_labels.append(cur_new_labels)
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
max_len = max(x.shape[0] for x in new_input_embeds)
new_input_embeds_align = []
for cur_new_embed in new_input_embeds:
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
new_input_embeds_align.append(cur_new_embed)
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
if labels is not None:
new_labels_align = []
_new_labels = new_labels
for cur_new_label in new_labels:
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
new_labels_align.append(cur_new_label)
new_labels = torch.stack(new_labels_align, dim=0)
if attention_mask is not None:
new_attention_mask = []
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
new_attention_mask.append(cur_new_attention_mask)
attention_mask = torch.stack(new_attention_mask, dim=0)
assert attention_mask.shape == new_labels.shape
else:
new_input_embeds = torch.stack(new_input_embeds, dim=0)
if labels is not None:
new_labels = torch.stack(new_labels, dim=0)
if attention_mask is not None:
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
assert attention_mask.shape == new_input_embeds.shape[:2]
return None, attention_mask, past_key_values, new_input_embeds, new_labels
class QH360_VLConfig(LlamaConfig):
model_type = "QH_360VL"
class QH360_VL_LlamaModel(QH360_VL_MetaModel, LlamaModel):
config_class = QH360_VLConfig
def __init__(self, config: LlamaConfig):
super(QH360_VL_LlamaModel, self).__init__(config)
class QH360_VL_LlamaForCausalLM(LlamaForCausalLM, QH360_VL_MetaForCausalLM):
config_class = QH360_VLConfig
def __init__(self, config):
super(LlamaForCausalLM, self).__init__(config)
config._attn_implementation == "flash_attention_2"
self.model = QH360_VL_LlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
}
)
return model_inputs
def build_conversation_input_ids(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
image = None,
image_processor=None,
):
sysp = (
'You are an expert identifying and clasifying information as Protected Health Information (PHI) based on the following criteria: '
'Inferred PHI encompasses information about a specific disease/condition/medical diagnosis, in the context '
'that the information MUST directly identify the specific disease/condition/medical diagnosis and MUST provide '
'treatments/services/specific information about the specific disease/condition/medical diagnosis; you MUST identify an actual disease/condition/diagnosis in the information to be considered PHI. '
'Pages containing "Patient Portal", "Patient Login" or "Schedule Appointment" (or similar) would typically be considered TO BE PHI. '
'Information about general/common conditions, such as covid-19 and the flu, and preventitive treatments is NOT PHI. '
'If you are unable to definitively determine the presence of PHI based information in the image, then you DID NOT identify PHI and your determination/response should begin with "No". '
'When providing your response it MUST start with "Yes" or "No" based on your review of the image, followed by a brief summary explanation of the rationale for the "Yes" or "No" decision including the information you found supporting that rational; '
'you MUST INCLUDE a brief summary explanation of the rationale for the "Yes" or "No" decision including the information you found supporting that rational.'
)
input_msg = [
{
"role": "system",
"content": sysp
},
{
"role": "user",
"content": "<|reserved_special_token_44|>"+ '\n' + query
}
]
input_ids = tokenizer.apply_chat_template(
input_msg,
add_generation_prompt=True,
padding="longest",
return_tensors="pt",
)
input_id_list = input_ids[0].tolist()
input_id_list[input_id_list.index(128049)]=-200
input_ids = torch.tensor(input_id_list, dtype=input_ids.dtype,device=input_ids.device)
input_ids = input_ids.unsqueeze(0)
image_tensor = self.process_images_slid_window(image,image_processor).unsqueeze(0)
return {
'input_ids': input_ids,
'image': image_tensor,
}
def process_images_slid_window(self, image, image_processor, vit_is=336):
def get_proper_imgsize(pil_img, vit_is):
max_w_h = vit_is * 2
new_pil_img = pil_img.resize((max_w_h, max_w_h))
return new_pil_img
def tensor_crop(tensor_array, left, upper, right, lower):
# tensor_array: C * H * W
return tensor_array[:, upper:lower, left:right]
def image_slid_window(image, num_slid_window):
# image: tensor, 3 * 336 * 336 or 3 * 672 * 672
# image: tensor, 3 * 224 * 224 or 3 * 448 * 448
if num_slid_window == 5:
image_x2, image_x1 = image[0], image[1]
vit_is = image_x1.shape[1]
h, w = image_x2.shape[1],image_x2.shape[2]
image0 = tensor_crop(image_x2, 0, 0, vit_is, vit_is)
image1 = tensor_crop(image_x2, w-vit_is, 0, w, vit_is)
image2 = tensor_crop(image_x2, 0, h-vit_is, vit_is, h)
image3 = tensor_crop(image_x2, w-vit_is, h-vit_is, w, h)
return torch.stack([image0, image1, image2, image3, image_x1])
else:
return image
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
vit_is = vit_is # vit_input_size, for simplicity
num_slid_window = 5
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
image = get_proper_imgsize(image, vit_is)
image_x2 = image_processor.preprocess(image, return_tensors='pt', do_resize=False, do_center_crop=False)['pixel_values'][0]
image_x1 = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
image = [image_x2, image_x1]
image = image_slid_window(image, num_slid_window)
return image