|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, \ |
|
LlamaConfig, LlamaModel, LlamaForCausalLM |
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from PIL import Image |
|
|
|
from abc import ABC, abstractmethod |
|
import os |
|
|
|
import math |
|
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig |
|
from functools import partial |
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
from timm.models.layers import LayerNorm, LayerNorm2d |
|
from timm.models.regnet import RegStage |
|
from torch.nn import functional as F |
|
import math |
|
from einops import rearrange |
|
|
|
|
|
|
|
CONTROLLER_HEART_BEAT_EXPIRATION = 30 |
|
WORKER_HEART_BEAT_INTERVAL = 15 |
|
|
|
LOGDIR = "." |
|
|
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
|
|
|
|
|
|
|
|
|
|
class CLIPVisionTower(nn.Module): |
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
|
|
self.vision_tower_name = vision_tower |
|
self.select_layer = args.mm_vision_select_layer |
|
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') |
|
|
|
if not delay_load: |
|
self.load_model() |
|
else: |
|
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) |
|
|
|
def load_model(self): |
|
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) |
|
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def feature_select(self, image_forward_outs): |
|
image_features = image_forward_outs.hidden_states[self.select_layer] |
|
if self.select_feature == 'patch': |
|
image_features = image_features[:, 1:] |
|
elif self.select_feature == 'cls_patch': |
|
image_features = image_features |
|
else: |
|
raise ValueError(f'Unexpected select feature: {self.select_feature}') |
|
return image_features |
|
|
|
@torch.no_grad() |
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
|
|
def build_vision_tower(vision_tower_cfg, **kwargs): |
|
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) |
|
is_absolute_path_exists = os.path.exists(vision_tower) |
|
|
|
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"): |
|
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) |
|
|
|
raise ValueError(f'Unknown vision tower: {vision_tower}') |
|
|
|
|
|
|
|
|
|
|
|
class HoneybeeVisualProjectorConfig(PretrainedConfig): |
|
model_type = "mllm_visual_projector" |
|
|
|
def __init__( |
|
self, |
|
projector_type: str = "resampler", |
|
hidden_size: int = 1024, |
|
num_hidden_layers: int = 6, |
|
num_attention_heads: int = 16, |
|
intermediate_size: int = 4096, |
|
attention_probs_dropout_prob: float = 0.1, |
|
initializer_range: float = 0.02, |
|
layer_norm_eps: float = 1e-6, |
|
encoder_hidden_size: int = 1024, |
|
pos_emb=False, |
|
feature_layer_index=-1, |
|
num_eos_tokens=1, |
|
use_cls=True, |
|
prenorm=False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.projector_type = projector_type |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.encoder_hidden_size = encoder_hidden_size |
|
|
|
self.pos_emb = pos_emb |
|
self.feature_layer_index = feature_layer_index |
|
self.num_eos_tokens = num_eos_tokens |
|
self.use_cls = use_cls |
|
self.prenorm = prenorm |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs |
|
) -> "PretrainedConfig": |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "QH_360VL": |
|
config_dict = config_dict["visual_projector_config"] |
|
|
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
def build_pos_embeds( |
|
config: HoneybeeVisualProjectorConfig, num_input_tokens: int, vision_hidden_size: int |
|
): |
|
|
|
|
|
if config.pos_emb: |
|
pos_emb = torch.nn.Parameter(torch.zeros(1, num_input_tokens, vision_hidden_size)) |
|
nn.init.trunc_normal_(pos_emb, mean=0.0, std=0.02) |
|
else: |
|
pos_emb = None |
|
|
|
return pos_emb |
|
|
|
|
|
def build_eos_tokens(config: HoneybeeVisualProjectorConfig, output_hidden_size: int): |
|
|
|
num_eos_tokens = config.num_eos_tokens |
|
|
|
if num_eos_tokens: |
|
eos_tokens = torch.nn.Parameter(torch.randn(1, num_eos_tokens, output_hidden_size)) |
|
nn.init.trunc_normal_(eos_tokens, mean=0.0, std=config.initializer_range) |
|
else: |
|
eos_tokens = None |
|
|
|
return eos_tokens |
|
|
|
|
|
def build_prenorm(config: HoneybeeVisualProjectorConfig): |
|
|
|
if config.prenorm: |
|
prenorm = LayerNorm(config.encoder_hidden_size) |
|
else: |
|
prenorm = None |
|
return prenorm |
|
|
|
|
|
def build_mlp(depth, hidden_size, output_hidden_size): |
|
layers = [nn.Linear(hidden_size, output_hidden_size)] |
|
for _ in range(1, depth): |
|
layers.append(nn.SiLU()) |
|
layers.append(nn.Linear(output_hidden_size, output_hidden_size)) |
|
return nn.Sequential(*layers) |
|
|
|
def get_abs_pos(abs_pos, tgt_size): |
|
|
|
|
|
|
|
|
|
src_size = int(math.sqrt(abs_pos.size(1))) |
|
|
|
tgt_size = int(math.sqrt(tgt_size)) |
|
dtype = abs_pos.dtype |
|
|
|
if src_size != tgt_size: |
|
return F.interpolate( |
|
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), |
|
size=(tgt_size, tgt_size), |
|
mode="bicubic", |
|
align_corners=False, |
|
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) |
|
else: |
|
return abs_pos |
|
|
|
|
|
class Projector(nn.Module): |
|
"""Base projector class""" |
|
|
|
def __init__( |
|
self, |
|
config: HoneybeeVisualProjectorConfig, |
|
num_input_tokens: int, |
|
output_hidden_size: int, |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.num_input_tokens = num_input_tokens |
|
self.output_hidden_size = output_hidden_size |
|
|
|
|
|
self.eos_tokens = build_eos_tokens(config, output_hidden_size) |
|
|
|
|
|
self.pos_emb = build_pos_embeds(config, num_input_tokens, config.encoder_hidden_size) |
|
|
|
self.prenorm = build_prenorm(config) |
|
|
|
self.build_net() |
|
|
|
def build_net(self): |
|
raise NotImplementedError() |
|
|
|
def _forward(self, x): |
|
raise NotImplementedError() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
x: (B, L, encoder_hidden_size) tensor from the visual backbone (CLIP visual encoder), including cls token. |
|
""" |
|
if self.prenorm is not None: |
|
x = self.prenorm(x) |
|
|
|
if self.pos_emb is not None: |
|
|
|
pos_emb = get_abs_pos(self.pos_emb[:,1:], x.size(1)) |
|
pos_emb = pos_emb.to(device=x.device) |
|
x += pos_emb |
|
|
|
x = self._forward(x) |
|
|
|
B = x.size(0) |
|
if self.eos_tokens is not None: |
|
x = torch.cat([x, self.eos_tokens.expand(B, -1, -1)], dim=1) |
|
return x |
|
|
|
|
|
class ConvProjector(Projector): |
|
def _forward(self, x): |
|
|
|
|
|
|
|
hw = int(x.size(1) ** 0.5) |
|
x = rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw) |
|
x = self.net(x) |
|
x = rearrange(x, "b d h w -> b (h w) d") |
|
x = self.readout(x) |
|
|
|
return x |
|
|
|
|
|
class CAbstractor(ConvProjector): |
|
"""C-Abstractor""" |
|
def build_net(self): |
|
encoder_hidden_size = self.config.encoder_hidden_size |
|
hidden_size = self.config.hidden_size |
|
output_hidden_size = self.output_hidden_size |
|
depth = self.config.depth |
|
mlp_depth = self.config.mlp_depth |
|
|
|
n_queries = self.config.num_queries |
|
assert (n_queries ** 0.5).is_integer(), "n_queries must be square number" |
|
hw = int(n_queries ** 0.5) |
|
|
|
|
|
RegBlock = partial( |
|
RegStage, |
|
stride=1, |
|
dilation=1, |
|
act_layer=nn.SiLU, |
|
norm_layer=LayerNorm2d, |
|
) |
|
|
|
s1 = RegBlock( |
|
depth, |
|
encoder_hidden_size, |
|
hidden_size, |
|
) |
|
sampler = nn.AdaptiveAvgPool2d((hw, hw)) |
|
s2 = RegBlock( |
|
depth, |
|
hidden_size, |
|
hidden_size, |
|
) |
|
|
|
self.net = nn.Sequential(s1, sampler, s2) |
|
self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size) |
|
|
|
class IdentityMap(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {"mm_projector_type": 'identity'} |
|
|
|
|
|
class SimpleResBlock(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.pre_norm = nn.LayerNorm(channels) |
|
|
|
self.proj = nn.Sequential( |
|
nn.Linear(channels, channels), |
|
nn.GELU(), |
|
nn.Linear(channels, channels) |
|
) |
|
def forward(self, x): |
|
x = self.pre_norm(x) |
|
return x + self.proj(x) |
|
|
|
|
|
def build_honeybee_projector(config, projector_type, num_tokens,lm_hidden_size): |
|
"""Build projector (abstractor) and query_tokens (optionally for resampler)""" |
|
proj_config = config |
|
proj_type = projector_type |
|
num_tokens = num_tokens |
|
output_hidden_size = lm_hidden_size |
|
|
|
abstractor = { |
|
"c-abs": CAbstractor, |
|
}[ |
|
proj_type |
|
](proj_config, num_tokens, output_hidden_size) |
|
return abstractor |
|
|
|
|
|
def build_vision_projector(config, delay_load=False, **kwargs): |
|
projector_type = getattr(config, 'mm_projector_type', 'linear') |
|
|
|
if projector_type == 'linear': |
|
return nn.Linear(config.mm_hidden_size, config.hidden_size) |
|
|
|
if projector_type == 'c-abs': |
|
|
|
local_config_path = config.mm_projector_config |
|
honeybee_config = HoneybeeVisualProjectorConfig.from_pretrained(local_config_path) |
|
|
|
num_tokens = config.mm_num_tokens |
|
|
|
lm_hidden_size = config.hidden_size |
|
|
|
abstractor = build_honeybee_projector(honeybee_config,projector_type,num_tokens,lm_hidden_size) |
|
return abstractor |
|
|
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
|
return nn.Sequential(*modules) |
|
|
|
if projector_type == 'identity': |
|
return IdentityMap() |
|
|
|
raise ValueError(f'Unknown projector type: {projector_type}') |
|
|
|
|
|
|
|
|
|
class QH360_VL_MetaModel: |
|
|
|
def __init__(self, config): |
|
super(QH360_VL_MetaModel, self).__init__(config) |
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector_ctt = build_vision_projector(config) |
|
self.mm_projector_ori = build_vision_projector(config) |
|
|
|
|
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
|
|
class QH360_VL_MetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().get_vision_tower()(images) |
|
image_features = self.get_model().mm_projector(image_features) |
|
return image_features |
|
|
|
def encode_images_noprojector(self, images): |
|
image_features = self.get_model().get_vision_tower()(images) |
|
image_features = image_features.detach() |
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, attention_mask, past_key_values, labels, images |
|
): |
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: |
|
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) |
|
return input_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
image_features = [] |
|
for image in images: |
|
if image.ndim == 3: |
|
image_features.append(self.encode_images(image.unsqueeze(0)).squeeze(0)) |
|
elif image.ndim == 4: |
|
|
|
temp_feats = self.encode_images_noprojector(image) |
|
src_size = int(math.sqrt(temp_feats.shape[1])) |
|
temp_feats = temp_feats.reshape(temp_feats.shape[0]//5,5,-1, temp_feats.shape[-1]) |
|
x1 = temp_feats[:,4,:,:] |
|
x = temp_feats[:,:4,:,:] |
|
x = x.reshape(x.shape[0], -1, src_size, src_size, x.shape[-1]) |
|
x = x.transpose(1,2).reshape(x.shape[0], src_size,2,2, src_size, x.shape[-1]) |
|
x = x.transpose(1,2).reshape(x.shape[0], -1, x.shape[-1]) |
|
x1 = self.get_model().mm_projector_ori(x1).squeeze(0) |
|
x = self.get_model().mm_projector_ctt(x).squeeze(0) |
|
temp_feats_all = torch.cat([x,x1],dim=0) |
|
image_features.append(temp_feats_all) |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
|
|
new_input_embeds = [] |
|
new_labels = [] if labels is not None else None |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: |
|
|
|
|
|
half_len = cur_input_ids.shape[0] // 2 |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) |
|
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
cur_new_input_embeds = [] |
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
assert cur_labels.shape == cur_input_ids.shape |
|
while image_token_indices.numel() > 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
image_token_start = image_token_indices[0] |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2])) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) |
|
cur_labels = cur_labels[image_token_start+2:] |
|
else: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_labels = cur_labels[image_token_start+1:] |
|
cur_image_idx += 1 |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_input_ids = cur_input_ids[image_token_start+2:] |
|
else: |
|
cur_input_ids = cur_input_ids[image_token_start+1:] |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
if cur_input_ids.numel() > 0: |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) |
|
else: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels) |
|
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] |
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): |
|
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) |
|
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) |
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
|
|
return None, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
|
|
class QH360_VLConfig(LlamaConfig): |
|
model_type = "QH_360VL" |
|
|
|
|
|
class QH360_VL_LlamaModel(QH360_VL_MetaModel, LlamaModel): |
|
config_class = QH360_VLConfig |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super(QH360_VL_LlamaModel, self).__init__(config) |
|
|
|
|
|
class QH360_VL_LlamaForCausalLM(LlamaForCausalLM, QH360_VL_MetaForCausalLM): |
|
config_class = QH360_VLConfig |
|
|
|
def __init__(self, config): |
|
super(LlamaForCausalLM, self).__init__(config) |
|
config._attn_implementation == "flash_attention_2" |
|
self.model = QH360_VL_LlamaModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
def build_conversation_input_ids( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
query: str, |
|
image = None, |
|
image_processor=None, |
|
): |
|
|
|
sysp = ( |
|
'You are an expert identifying and clasifying information as Protected Health Information (PHI) based on the following criteria: ' |
|
'Inferred PHI encompasses information about a specific disease/condition/medical diagnosis, in the context ' |
|
'that the information MUST directly identify the specific disease/condition/medical diagnosis and MUST provide ' |
|
'treatments/services/specific information about the specific disease/condition/medical diagnosis; you MUST identify an actual disease/condition/diagnosis in the information to be considered PHI. ' |
|
'Pages containing "Patient Portal", "Patient Login" or "Schedule Appointment" (or similar) would typically be considered TO BE PHI. ' |
|
'Information about general/common conditions, such as covid-19 and the flu, and preventitive treatments is NOT PHI. ' |
|
'If you are unable to definitively determine the presence of PHI based information in the image, then you DID NOT identify PHI and your determination/response should begin with "No". ' |
|
'When providing your response it MUST start with "Yes" or "No" based on your review of the image, followed by a brief summary explanation of the rationale for the "Yes" or "No" decision including the information you found supporting that rational; ' |
|
'you MUST INCLUDE a brief summary explanation of the rationale for the "Yes" or "No" decision including the information you found supporting that rational.' |
|
) |
|
|
|
input_msg = [ |
|
{ |
|
"role": "system", |
|
"content": sysp |
|
}, |
|
{ |
|
"role": "user", |
|
"content": "<|reserved_special_token_44|>"+ '\n' + query |
|
} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
input_msg, |
|
add_generation_prompt=True, |
|
padding="longest", |
|
return_tensors="pt", |
|
) |
|
input_id_list = input_ids[0].tolist() |
|
input_id_list[input_id_list.index(128049)]=-200 |
|
input_ids = torch.tensor(input_id_list, dtype=input_ids.dtype,device=input_ids.device) |
|
input_ids = input_ids.unsqueeze(0) |
|
image_tensor = self.process_images_slid_window(image,image_processor).unsqueeze(0) |
|
|
|
return { |
|
'input_ids': input_ids, |
|
'image': image_tensor, |
|
} |
|
|
|
|
|
|
|
def process_images_slid_window(self, image, image_processor, vit_is=336): |
|
|
|
def get_proper_imgsize(pil_img, vit_is): |
|
max_w_h = vit_is * 2 |
|
new_pil_img = pil_img.resize((max_w_h, max_w_h)) |
|
return new_pil_img |
|
|
|
def tensor_crop(tensor_array, left, upper, right, lower): |
|
|
|
return tensor_array[:, upper:lower, left:right] |
|
|
|
def image_slid_window(image, num_slid_window): |
|
|
|
|
|
if num_slid_window == 5: |
|
image_x2, image_x1 = image[0], image[1] |
|
vit_is = image_x1.shape[1] |
|
h, w = image_x2.shape[1],image_x2.shape[2] |
|
image0 = tensor_crop(image_x2, 0, 0, vit_is, vit_is) |
|
image1 = tensor_crop(image_x2, w-vit_is, 0, w, vit_is) |
|
image2 = tensor_crop(image_x2, 0, h-vit_is, vit_is, h) |
|
image3 = tensor_crop(image_x2, w-vit_is, h-vit_is, w, h) |
|
return torch.stack([image0, image1, image2, image3, image_x1]) |
|
else: |
|
return image |
|
|
|
def expand2square(pil_img, background_color): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
vit_is = vit_is |
|
|
|
num_slid_window = 5 |
|
|
|
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) |
|
image = get_proper_imgsize(image, vit_is) |
|
image_x2 = image_processor.preprocess(image, return_tensors='pt', do_resize=False, do_center_crop=False)['pixel_values'][0] |
|
image_x1 = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] |
|
image = [image_x2, image_x1] |
|
image = image_slid_window(image, num_slid_window) |
|
|
|
return image |
|
|