File size: 5,607 Bytes
9167a46
 
 
b7c49d3
9167a46
 
 
b7c49d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a985f95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4809f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3bdc86
 
d02220f
76e9c13
d02220f
76e9c13
d02220f
76e9c13
d02220f
a985f95
b7c49d3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
language:
- en
license: cc-by-nc-sa-4.0
tags:
- code
- data science
datasets:
- ed001/ds-coder-instruct-v1
pipeline_tag: text-generation
model-index:
- name: datascience-coder-6.7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 34.64
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 53.83
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 37.96
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 44.82
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 55.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.94
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
      name: Open LLM Leaderboard
---

# The Data Science Coder

Data Science coder is a group of fine tuned models designed to help with coding for data science applications. It comes in 2 variants: 1.3b and 6.7b. Models are fine tuned from DeepSeek Coder instruct versions. Fine tuning was performed on the [ed001/ds-coder-instruct-v1](https://huggingface.co/datasets/ed001/ds-coder-instruct-v1) dataset which is constructed by filtering publicly available datasets on HuggingFace.

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

def build_instruction_prompt(instruction):
    return '''
    You are the Data Science Coder, a helpful AI assistant created by a man named Ed.
    You help people with data science coding and you answer questions about data science in a helpful manner.
    ### Instruction:
    {}
    ### Response:
    '''.format(instruction.strip()).lstrip()

tokenizer = AutoTokenizer.from_pretrained("ed001/datascience-coder-6.7b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ed001/datascience-coder-6.7b", trust_remote_code=True).cuda()
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=1024, top_p=0.95)
result = pipe(build_instruction_prompt("Perform EDA on the Iris dataset"))
print(result[0]['generated_text'])
```

## Training Details
lora_r: 16  
lora_alpha: 8  
lora_dropout: 0.05  
target_modules: q, k, v, o, gate_proj, down_proj, up_proj, lm_head  
weight_decay: 0  
optmizer: paged_adamw_32bit  
lr: 1e-4  
lr_scheduler: cosine  
max_seq_len: 4096  
batch_size: 4  
max_grad_norm: 0.5  
warmup_ratio: 0.05  
num_epochs: 1  

The model was trained on the python susbet of the ds-coder-instruct dataset.

## Samples
<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/0H8lj26xLOfLuCD0yVmER.png" width="90%"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/8W62qr1cPSLsq6lLfLCib.png" width="90%"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/XNLclcr4KQqtPseGg2Gzn.png" width="90%"/>

## Contact
GitHub: [Ea0011](https://github.com/Ea0011)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ed001__datascience-coder-6.7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |41.99|
|AI2 Reasoning Challenge (25-Shot)|34.64|
|HellaSwag (10-Shot)              |53.83|
|MMLU (5-Shot)                    |37.96|
|TruthfulQA (0-shot)              |44.82|
|Winogrande (5-shot)              |55.72|
|GSM8k (5-shot)                   |24.94|