File size: 5,607 Bytes
9167a46 b7c49d3 9167a46 b7c49d3 a985f95 4809f3b c3bdc86 d02220f 76e9c13 d02220f 76e9c13 d02220f 76e9c13 d02220f a985f95 b7c49d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
language:
- en
license: cc-by-nc-sa-4.0
tags:
- code
- data science
datasets:
- ed001/ds-coder-instruct-v1
pipeline_tag: text-generation
model-index:
- name: datascience-coder-6.7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 34.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 53.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.96
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.82
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.72
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.94
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
---
# The Data Science Coder
Data Science coder is a group of fine tuned models designed to help with coding for data science applications. It comes in 2 variants: 1.3b and 6.7b. Models are fine tuned from DeepSeek Coder instruct versions. Fine tuning was performed on the [ed001/ds-coder-instruct-v1](https://huggingface.co/datasets/ed001/ds-coder-instruct-v1) dataset which is constructed by filtering publicly available datasets on HuggingFace.
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
def build_instruction_prompt(instruction):
return '''
You are the Data Science Coder, a helpful AI assistant created by a man named Ed.
You help people with data science coding and you answer questions about data science in a helpful manner.
### Instruction:
{}
### Response:
'''.format(instruction.strip()).lstrip()
tokenizer = AutoTokenizer.from_pretrained("ed001/datascience-coder-6.7b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ed001/datascience-coder-6.7b", trust_remote_code=True).cuda()
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=1024, top_p=0.95)
result = pipe(build_instruction_prompt("Perform EDA on the Iris dataset"))
print(result[0]['generated_text'])
```
## Training Details
lora_r: 16
lora_alpha: 8
lora_dropout: 0.05
target_modules: q, k, v, o, gate_proj, down_proj, up_proj, lm_head
weight_decay: 0
optmizer: paged_adamw_32bit
lr: 1e-4
lr_scheduler: cosine
max_seq_len: 4096
batch_size: 4
max_grad_norm: 0.5
warmup_ratio: 0.05
num_epochs: 1
The model was trained on the python susbet of the ds-coder-instruct dataset.
## Samples
<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/0H8lj26xLOfLuCD0yVmER.png" width="90%"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/8W62qr1cPSLsq6lLfLCib.png" width="90%"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/XNLclcr4KQqtPseGg2Gzn.png" width="90%"/>
## Contact
GitHub: [Ea0011](https://github.com/Ea0011)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ed001__datascience-coder-6.7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |41.99|
|AI2 Reasoning Challenge (25-Shot)|34.64|
|HellaSwag (10-Shot) |53.83|
|MMLU (5-Shot) |37.96|
|TruthfulQA (0-shot) |44.82|
|Winogrande (5-shot) |55.72|
|GSM8k (5-shot) |24.94|
|