eddiegulay
commited on
Commit
•
1a7b3cd
1
Parent(s):
3aca3e9
Create inference.py
Browse files- inference.py +31 -0
inference.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
repo_id =
|
7 |
+
|
8 |
+
model = Wav2Vec2ForCTC.from_pretrained(repo_id)
|
9 |
+
processor = Wav2Vec2Processor.from_pretrained(repo_id)
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def transcribe(audio_path):
|
14 |
+
# Load the audio file
|
15 |
+
audio_input, sample_rate = torchaudio.load(audio_path)
|
16 |
+
target_sample_rate = 16000
|
17 |
+
audio_input = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)(audio_input)
|
18 |
+
|
19 |
+
# Preprocess the audio data
|
20 |
+
input_dict = processor(audio_input[0], return_tensors="pt", padding=True, sampling_rate=16000)
|
21 |
+
|
22 |
+
# Perform inference and transcribe
|
23 |
+
logits = model(input_dict.input_values).logits
|
24 |
+
pred_ids = torch.argmax(logits, dim=-1)[0]
|
25 |
+
transcription = processor.decode(pred_ids)
|
26 |
+
|
27 |
+
return transcription
|
28 |
+
|
29 |
+
|
30 |
+
# transcribe sample audio
|
31 |
+
transcribe("download.wav")
|