File size: 14,318 Bytes
59a9def |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a00b49d37f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a00b49d3880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a00b49d3910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a00b49d39a0>", "_build": "<function ActorCriticPolicy._build at 0x7a00b49d3a30>", "forward": "<function ActorCriticPolicy.forward at 0x7a00b49d3ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a00b49d3b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a00b49d3be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a00b49d3c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a00b49d3d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a00b49d3d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a00b49d3e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a00c1df3640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690766911401575124, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF3RtD549JE91/kDP9NPzr4RGC8+JtjKPinOkL71Jh7AUFrpvpmTJkBBAqk/9SIlQMVCq7/hSmK7Aw/VPoDsDD5EjwA/oKtQvHgdLD9FsSq/mXMLv1ryBTxNqSK/0BjTv/sHlL9el9E+e3YVP68tj7/yyUo/XYwnv4PctD5hJIw+nuJ0vav+MECADIQ/aHFowJ/+xb91SIdAzzYQQBnK2j8zk5e+SU85P09JYT85goU9rdmgP8OeUry7Lzg/r0MsPbmEkr6I9+0//7MoQAaoUb/7B5S/XpfRPnt2FT+vLY+/wNQ7vvbxPz7qogE/otHzvp4Ibb/Cpl7AHzznPpDVr75XZf+/T8mTP0XObj/fnjc/Q6GrvzpMuDzq4Es/t67XPzV+Ar+XrSU+1nAwP8td8j5CNxNAGGYCQCJ1UL/JrAs/2VtdP6VXHMANPdu/ry2PvyGDjj7IpY4+Cyj8PlvPdL512lo/ktW0P+SNR75T3FHASKswvxYkUsBnDC1A4AbHP6z7ir88eHk+JHFgP4/x6rwLu0s/Ux2yPCX0OD8rk4C86QUcQHIxcb8SXHK9MrH/P/sHlL9el9E+e3YVP68tj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADrGpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmN59vAAAAAAYG9q/AAAAAEsMwj0AAAAAT33dPwAAAAC7GVW8AAAAAOeZ3z8AAAAAJx2yvQAAAAApQOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApsCJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNfq4rsAAAAA1QrevwAAAADRV0W9AAAAAMSZ9D8AAAAAmNnvPQAAAAAG5+w/AAAAAB8G3L0AAAAA8gnrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvT+bQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDDIZq8AAAAAISN7b8AAAAA4I6+vQAAAACh7uY/AAAAAHpATD0AAAAAxMPhPwAAAADpfEq7AAAAADjy+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8EKO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADdS+PAAAAAAwsfG/AAAAAGOqjz0AAAAAzST8PwAAAABPTQu9AAAAABae2z8AAAAABIGAPQAAAAD01Ni/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQeWfthNM6MAWyUTegDjAF0lEdAqGZ1AmiQDHV9lChoBkdAmIInLJSzgWgHTegDaAhHQKhn/xPO6d11fZQoaAZHQIRiEcXFcY9oB03oA2gIR0Cob8OGj9GadX2UKGgGR0CTcfi/fwZwaAdN6ANoCEdAqHHTTUiIL3V9lChoBkdAlaWV58jRlmgHTegDaAhHQKhzv4Ju2ql1fZQoaAZHQIIxDCWNWENoB03oA2gIR0CodUGBOHnEdX2UKGgGR0CK/9B2wFC+aAdN6ANoCEdAqHz0riEQG3V9lChoBkdAh3JeCbtqpWgHTegDaAhHQKh/DbRnezl1fZQoaAZHQIO6AY51eSloB03oA2gIR0CogQl2V3UydX2UKGgGR0CR3yBFNL13aAdN6ANoCEdAqIKSxu89OnV9lChoBkdAhu94eLehwmgHTegDaAhHQKiKY7hegL91fZQoaAZHQIMamr4nF5xoB03oA2gIR0CojHTTfBN3dX2UKGgGR0CFwww2VE/jaAdN6ANoCEdAqI5e/vfCRHV9lChoBkdAipXjxkNF0GgHTegDaAhHQKiP3z2exwB1fZQoaAZHQIam7XL/0d1oB03oA2gIR0Col6YKx9ofdX2UKGgGR0CIvyvllsguaAdN6ANoCEdAqJm2JemelXV9lChoBkdAgwz+9SMtLGgHTegDaAhHQKibovxH5Jt1fZQoaAZHQIO4WkzoEB9oB03oA2gIR0ConSfrSmZWdX2UKGgGR0CHDd4D9wWFaAdN6ANoCEdAqKTiIHkcTHV9lChoBkdAhqjzA31jAmgHTegDaAhHQKim75P/JeV1fZQoaAZHQIVkEJx//edoB03oA2gIR0CoqN+gDifhdX2UKGgGR0CKINSCOFQEaAdN6ANoCEdAqKpf/tICl3V9lChoBkdAhxUPBrN4aGgHTegDaAhHQKiyMFJxvNx1fZQoaAZHQIdswmZ3LV5oB03oA2gIR0CotEDGLk0adX2UKGgGR0CEZxbzK9wnaAdN6ANoCEdAqLYt/tpmE3V9lChoBkdAg9/FYU34sWgHTegDaAhHQKi3td/J/5N1fZQoaAZHQIqypHww0wdoB03oA2gIR0Cov4Wl/H5rdX2UKGgGR0CD0Jq/ub7TaAdN6ANoCEdAqMGQpF1B+nV9lChoBkdAho6kqDsdDWgHTegDaAhHQKjDfFhoduJ1fZQoaAZHQIa7s2pAD7toB03oA2gIR0CoxQOnl4kedX2UKGgGR0CGOAS7GvOhaAdN6ANoCEdAqMzivRqoInV9lChoBkdAho4BOpKjBWgHTegDaAhHQKjO8kleF+N1fZQoaAZHQIekqXKKYRdoB03oA2gIR0Co0ONuUD+zdX2UKGgGR0CHrFWZJCjUaAdN6ANoCEdAqNJmgxrSE3V9lChoBkdAhCXyw4bS7WgHTegDaAhHQKjaIcYIjW11fZQoaAZHQIAH0o0ALiNoB03oA2gIR0Co3DHl4keIdX2UKGgGR0COs+8AaNuMaAdN6ANoCEdAqN4aRSxZ+3V9lChoBkdAhHg8CHRCyGgHTegDaAhHQKjfnxEv0yx1fZQoaAZHQIK674i5d4VoB03oA2gIR0Co53dC/oJRdX2UKGgGR0CDVeRcNYr8aAdN6ANoCEdAqOmOlMyrP3V9lChoBkdAjNO6GYa5w2gHTegDaAhHQKjrd73wkPd1fZQoaAZHQIeRFNrTH81oB03oA2gIR0Co7PoJZ4fPdX2UKGgGR0CIMdWdVea8aAdN6ANoCEdAqPSr8tPHk3V9lChoBkdAiBtd9Dx9X2gHTegDaAhHQKj2tMr3Cbd1fZQoaAZHQJTzSnLq2SdoB03oA2gIR0Co+J+j2zv7dX2UKGgGR0CGWmYixFAnaAdN6ANoCEdAqPoyE6DGtXV9lChoBkdAg1wniWE9MmgHTegDaAhHQKkCBP2PDHh1fZQoaAZHQIbBPaFmFrVoB03oA2gIR0CpBBc4o7V8dX2UKGgGR0CMy6ois4kvaAdN6ANoCEdAqQYKcwxnF3V9lChoBkdAicM7MPjGUGgHTegDaAhHQKkHkI7eVLV1fZQoaAZHQIZVMiD/VAloB03oA2gIR0CpD2JUHY6GdX2UKGgGR0CJMGPaL4vfaAdN6ANoCEdAqRF9+XqqwXV9lChoBkdAiy6fcWTHKmgHTegDaAhHQKkTcuWa+ex1fZQoaAZHQI/TzXQMQVdoB03oA2gIR0CpFP9BSk0rdX2UKGgGR0CIMe6PsAvMaAdN6ANoCEdAqRykaMrEtXV9lChoBkdAfzy/zJ6ppGgHTegDaAhHQKkerDUmUnp1fZQoaAZHQIv2Mm2LHdZoB03oA2gIR0CpIJTtLL6ldX2UKGgGR0CFsf9oexOdaAdN6ANoCEdAqSIWQ+2VmnV9lChoBkdAi3JActGutGgHTegDaAhHQKkpvp7CzkZ1fZQoaAZHQIgCcLQXyiFoB03oA2gIR0CpK8ceS0SidX2UKGgGR0CIsflar3j/aAdN6ANoCEdAqS208JUo8nV9lChoBkdAhWRDJMg2ZWgHTegDaAhHQKkvOO4oZyd1fZQoaAZHQIjud78ejmFoB03oA2gIR0CpNvIFvAGjdX2UKGgGR0CEeX3aBZp0aAdN6ANoCEdAqTj+KuSwGHV9lChoBkdAgzsaW5YozGgHTegDaAhHQKk67NwiqyZ1fZQoaAZHQIfUcKLKmsNoB03oA2gIR0CpPGtbC79RdX2UKGgGR0BYxIIv8IiUaAdNSwFoCEdAqT1YGjbi63V9lChoBkdAhaM1GLDQ7mgHTegDaAhHQKlEHQa72+R1fZQoaAZHQIS/cEV32VVoB03oA2gIR0CpSCaCL/CJdX2UKGgGR0B3gU70WdmQaAdN6ANoCEdAqUmocghbGHV9lChoBkdAga3Vo6CDmWgHTegDaAhHQKlKmGEf1Yh1fZQoaAZHQIRUZky1uzhoB03oA2gIR0CpUWVmapgkdX2UKGgGR0CDENy08eS0aAdN6ANoCEdAqVVkjmjj73V9lChoBkdAgmE9TxXnyWgHTegDaAhHQKlW8Nx2jfx1fZQoaAZHQIX/N4zJp35oB03oA2gIR0CpV+C3gDRudX2UKGgGR0CCUMpKjBVNaAdN6ANoCEdAqV7Bh6SkkHV9lChoBkdAhSFB+4LCvWgHTegDaAhHQKlisp5u63B1fZQoaAZHQIR/fJeVs1toB03oA2gIR0CpZDO/cnE3dX2UKGgGR0CCmOmIj4YaaAdN6ANoCEdAqWUp5Z8rqnV9lChoBkdAiL9R3NcGDGgHTegDaAhHQKlr7dUsFt91fZQoaAZHQIT47IikftBoB03oA2gIR0Cpb+YR/ViGdX2UKGgGR0CJyjkNnXd1aAdN6ANoCEdAqXFkv7FbV3V9lChoBkdAiUkj+717IGgHTegDaAhHQKlyUGB4D9x1fZQoaAZHQIZ5fiJfplloB03oA2gIR0CpeQguyu6mdX2UKGgGR0CBzY2hqTKUaAdN6ANoCEdAqXz3rpqynnV9lChoBkdAjl2S+HrQgWgHTegDaAhHQKl+dmVZ9ux1fZQoaAZHQI+RcIgNgBtoB03oA2gIR0Cpf1+0w8GLdX2UKGgGR0CS4Jq2BreqaAdN6ANoCEdAqYYDhLoOhHV9lChoBkdAkgxMjJMg2mgHTegDaAhHQKmJ6HryDqZ1fZQoaAZHQJTi4vFm4AloB03oA2gIR0Cpi2kIPbwjdX2UKGgGR0CFR0HHFPznaAdN6ANoCEdAqYxRBZ6lcnV9lChoBkdAkI+EELYwqWgHTegDaAhHQKmTHQ7cO9Z1fZQoaAZHQJSikaGYa5xoB03oA2gIR0Cplv2XLNfPdX2UKGgGR0CPrdavA44qaAdN6ANoCEdAqZh4QBgeBHV9lChoBkdAj2G64MF2V2gHTegDaAhHQKmZYj9n9Nx1fZQoaAZHQJKWEcdYGMZoB03oA2gIR0Cpn/olt0mudX2UKGgGR0COlQHsTnJUaAdN6ANoCEdAqaPkHjZL7HV9lChoBkdAkKNxaPjn3mgHTegDaAhHQKmlYT6BRQ91fZQoaAZHQI63QXVLBbhoB03oA2gIR0Cppk0Cq6vrdX2UKGgGR0CMG5FrEcbSaAdN6ANoCEdAqaz0RxtHhHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |