a2c-PandaReachDense-v2 / config.json
edures's picture
Initial commit
f5bb09f
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bb51e1ee3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb51e1dff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690802054731232477, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkLvmPq+ztbwW4BU/kLvmPq+ztbwW4BU/kLvmPq+ztbwW4BU/kLvmPq+ztbwW4BU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEPyvv8JKpD9OR6s+FiNcP2Xbr7/an4g9WoOfPjTcWT+7l6Y/ulaqP7RMgT6Gznu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQu+Y+r7O1vBbgFT/xRAI8OrMju1EFEDyQu+Y+r7O1vBbgFT/xRAI8OrMju1EFEDyQu+Y+r7O1vBbgFT/xRAI8OrMju1EFEDyQu+Y+r7O1vBbgFT/xRAI8OrMju1EFEDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45064974 -0.02218041 0.58545053]\n [ 0.45064974 -0.02218041 0.58545053]\n [ 0.45064974 -0.02218041 0.58545053]\n [ 0.45064974 -0.02218041 0.58545053]]", "desired_goal": "[[-1.3748798 1.2835314 0.3345284 ]\n [ 0.85991037 -1.3738829 0.06671114]\n [ 0.311549 0.8510163 1.3015054 ]\n [ 1.3307717 0.25253832 -0.98362005]]", "observation": "[[ 0.45064974 -0.02218041 0.58545053 0.00795101 -0.00249787 0.00879033]\n [ 0.45064974 -0.02218041 0.58545053 0.00795101 -0.00249787 0.00879033]\n [ 0.45064974 -0.02218041 0.58545053 0.00795101 -0.00249787 0.00879033]\n [ 0.45064974 -0.02218041 0.58545053 0.00795101 -0.00249787 0.00879033]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAptQMPoDKl70vxSA+HukAPkGPAD7ppWo7vv3EvLhbBz1CO2w90mv0PZ1Q9rxhX/E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13752994 -0.07411671 0.1570022 ]\n [ 0.12588927 0.12554647 0.00358045]\n [-0.02404677 0.03304645 0.0576737 ]\n [ 0.11934628 -0.03006774 0.1178577 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFLLzNjaXQcCUhpRSlIwBbJRLMowBdJRHQLUyEhQm/nJ1fZQoaAZoCWgPQwiLMhtkkhFCwJSGlFKUaBVLMmgWR0C1MfUOuq3mdX2UKGgGaAloD0MIhxqFJLMGQMCUhpRSlGgVSzJoFkdAtTHV9BrvcHV9lChoBmgJaA9DCFQ1QdR9kBfAlIaUUpRoFUsyaBZHQLUxryjpLVZ1fZQoaAZoCWgPQwhpVUs6yiETwJSGlFKUaBVLMmgWR0C1MpE5dWyUdX2UKGgGaAloD0MIbazEPCtxJMCUhpRSlGgVSzJoFkdAtTJ0G9pRGnV9lChoBmgJaA9DCGN9A5Mb1STAlIaUUpRoFUsyaBZHQLUyVPuogmt1fZQoaAZoCWgPQwgHCVG+oN0iwJSGlFKUaBVLMmgWR0C1Mi4fr8iwdX2UKGgGaAloD0MI1c4wtaU+GMCUhpRSlGgVSzJoFkdAtTMQk3S8anV9lChoBmgJaA9DCHjxftx+6RbAlIaUUpRoFUsyaBZHQLUy83Gn4wh1fZQoaAZoCWgPQwimnZrLDcYSwJSGlFKUaBVLMmgWR0C1MtQ08/2TdX2UKGgGaAloD0MIQ3HHm/wWHcCUhpRSlGgVSzJoFkdAtTKtcX3xnXV9lChoBmgJaA9DCJC93v3xDiDAlIaUUpRoFUsyaBZHQLUzkRV6u4h1fZQoaAZoCWgPQwifH0YIj+YUwJSGlFKUaBVLMmgWR0C1M3QFHJ9zdX2UKGgGaAloD0MIW5avy/DfHMCUhpRSlGgVSzJoFkdAtTNU9IPK+3V9lChoBmgJaA9DCHZTymslhBrAlIaUUpRoFUsyaBZHQLUzLk690zV1fZQoaAZoCWgPQwhnmUUotkIcwJSGlFKUaBVLMmgWR0C1NBbaZhKEdX2UKGgGaAloD0MImzqPiv+bJ8CUhpRSlGgVSzJoFkdAtTP5vybx3HV9lChoBmgJaA9DCL2KjA5I8hvAlIaUUpRoFUsyaBZHQLUz2rE9+w11fZQoaAZoCWgPQwg6IAn7dtYywJSGlFKUaBVLMmgWR0C1M7P2saKldX2UKGgGaAloD0MIsRU0LbHiEsCUhpRSlGgVSzJoFkdAtTSXXnQpnnV9lChoBmgJaA9DCJ5DGapiGhjAlIaUUpRoFUsyaBZHQLU0ekcCHRF1fZQoaAZoCWgPQwinBMQkXJgewJSGlFKUaBVLMmgWR0C1NFsW9DhMdX2UKGgGaAloD0MISfPHtDbdGMCUhpRSlGgVSzJoFkdAtTQ0RTS9d3V9lChoBmgJaA9DCAaeew+XJCXAlIaUUpRoFUsyaBZHQLU1H5zo2XN1fZQoaAZoCWgPQwjchHtl3hoQwJSGlFKUaBVLMmgWR0C1NQK3mV7hdX2UKGgGaAloD0MIU8+CUN6HFcCUhpRSlGgVSzJoFkdAtTTj2SMcZXV9lChoBmgJaA9DCG4Xmus0EhHAlIaUUpRoFUsyaBZHQLU0vR8MNMJ1fZQoaAZoCWgPQwgx7Zv7q8cwwJSGlFKUaBVLMmgWR0C1NbJoXbdrdX2UKGgGaAloD0MICtl5G5udHsCUhpRSlGgVSzJoFkdAtTWVXA/LT3V9lChoBmgJaA9DCB/4GKw4dQ7AlIaUUpRoFUsyaBZHQLU1dnp0OmR1fZQoaAZoCWgPQwhdMo6R7OE0wJSGlFKUaBVLMmgWR0C1NU/Tb349dX2UKGgGaAloD0MITkLpCyFfJsCUhpRSlGgVSzJoFkdAtTZCPLgXM3V9lChoBmgJaA9DCCApIsMqfhHAlIaUUpRoFUsyaBZHQLU2JRR/EwZ1fZQoaAZoCWgPQwi1+1WA77YXwJSGlFKUaBVLMmgWR0C1NgYBzV+adX2UKGgGaAloD0MIGQRWDi0yFsCUhpRSlGgVSzJoFkdAtTXfSSeRP3V9lChoBmgJaA9DCDelvFZClwXAlIaUUpRoFUsyaBZHQLU2zIJZ4fR1fZQoaAZoCWgPQwiR8SiV8LwjwJSGlFKUaBVLMmgWR0C1Nq+JgsshdX2UKGgGaAloD0MIS3ZsBOIlEMCUhpRSlGgVSzJoFkdAtTaQug6EJ3V9lChoBmgJaA9DCDLJyFnYcxrAlIaUUpRoFUsyaBZHQLU2ajDbah91fZQoaAZoCWgPQwgn2lVI+akawJSGlFKUaBVLMmgWR0C1N17rs0HhdX2UKGgGaAloD0MIOrGH9rGiEsCUhpRSlGgVSzJoFkdAtTdCPGQ0XXV9lChoBmgJaA9DCNRDNLqDWBLAlIaUUpRoFUsyaBZHQLU3IzSCvox1fZQoaAZoCWgPQwg2PSgoRYsUwJSGlFKUaBVLMmgWR0C1NvyKm8/VdX2UKGgGaAloD0MIQSswZHVrIcCUhpRSlGgVSzJoFkdAtTfszbeuWHV9lChoBmgJaA9DCCcvMgG/ZhvAlIaUUpRoFUsyaBZHQLU3z7tiQT51fZQoaAZoCWgPQwhZUYNpGM4nwJSGlFKUaBVLMmgWR0C1N7C35N48dX2UKGgGaAloD0MIVwirsYRdIcCUhpRSlGgVSzJoFkdAtTeJ5LRKH3V9lChoBmgJaA9DCPa1LjVCPx3AlIaUUpRoFUsyaBZHQLU4biPyTZB1fZQoaAZoCWgPQwh1HaopyWoVwJSGlFKUaBVLMmgWR0C1OFEWhysCdX2UKGgGaAloD0MITwgddAknC8CUhpRSlGgVSzJoFkdAtTgx8JD3NHV9lChoBmgJaA9DCJXXSuguGR/AlIaUUpRoFUsyaBZHQLU4CzD4xlB1fZQoaAZoCWgPQwico46Oq4EYwJSGlFKUaBVLMmgWR0C1OOcUqQRxdX2UKGgGaAloD0MIdcsO8Q8bJcCUhpRSlGgVSzJoFkdAtTjJ5Rjz7XV9lChoBmgJaA9DCHjuPVxyDCHAlIaUUpRoFUsyaBZHQLU4qs4T9Kp1fZQoaAZoCWgPQwiqudxgqLMTwJSGlFKUaBVLMmgWR0C1OISaJAMVdX2UKGgGaAloD0MIRPgXQWNGDsCUhpRSlGgVSzJoFkdAtTmPwG4ZuXV9lChoBmgJaA9DCHy6umOxdTDAlIaUUpRoFUsyaBZHQLU5cyY5T611fZQoaAZoCWgPQwhJhEawcd0TwJSGlFKUaBVLMmgWR0C1OVRnezlcdX2UKGgGaAloD0MIqYQn9PrDE8CUhpRSlGgVSzJoFkdAtTkt/x2B8XV9lChoBmgJaA9DCNnPYimSTx3AlIaUUpRoFUsyaBZHQLU6YM+u/1x1fZQoaAZoCWgPQwgnE7cKYiAWwJSGlFKUaBVLMmgWR0C1OkPo/zJ7dX2UKGgGaAloD0MIpz6QvHNYG8CUhpRSlGgVSzJoFkdAtTolGTcIq3V9lChoBmgJaA9DCML7qlyozBjAlIaUUpRoFUsyaBZHQLU5/prk8zR1fZQoaAZoCWgPQwi0PuWYLC4JwJSGlFKUaBVLMmgWR0C1O2MwxnFpdX2UKGgGaAloD0MIeeqRBrf1HMCUhpRSlGgVSzJoFkdAtTtGiXY153V9lChoBmgJaA9DCPFjzF1L7DPAlIaUUpRoFUsyaBZHQLU7J+YtxuN1fZQoaAZoCWgPQwhMio9PyM4ywJSGlFKUaBVLMmgWR0C1OwIo/iYLdX2UKGgGaAloD0MIrrmj/+XqIMCUhpRSlGgVSzJoFkdAtTxbLowEhnV9lChoBmgJaA9DCB1XI7vS0grAlIaUUpRoFUsyaBZHQLU8Pt1p0wJ1fZQoaAZoCWgPQwhqwYu+goQQwJSGlFKUaBVLMmgWR0C1PCAgs9SudX2UKGgGaAloD0MIRBZp4h1gJ8CUhpRSlGgVSzJoFkdAtTv5ix3V1HV9lChoBmgJaA9DCL1V16GakhPAlIaUUpRoFUsyaBZHQLU9CiiZfD11fZQoaAZoCWgPQwic/YFy244WwJSGlFKUaBVLMmgWR0C1PO0LQXyidX2UKGgGaAloD0MIzGCMSBRKIcCUhpRSlGgVSzJoFkdAtTzN/6O5rnV9lChoBmgJaA9DCKta0lEOJhbAlIaUUpRoFUsyaBZHQLU8p1AZ88d1fZQoaAZoCWgPQwiGyVTBqGQbwJSGlFKUaBVLMmgWR0C1PY+jRD1HdX2UKGgGaAloD0MIVn2utmJPFMCUhpRSlGgVSzJoFkdAtT1yoUBXCHV9lChoBmgJaA9DCKdaC7PQ5iDAlIaUUpRoFUsyaBZHQLU9U3w1BMV1fZQoaAZoCWgPQwgzFk1nJ4MLwJSGlFKUaBVLMmgWR0C1PSzaXa8IdX2UKGgGaAloD0MIJXfYRGbOFMCUhpRSlGgVSzJoFkdAtT4N07r9l3V9lChoBmgJaA9DCDLIXYQp2hXAlIaUUpRoFUsyaBZHQLU98K15Sm91fZQoaAZoCWgPQwgj9gmgGMkQwJSGlFKUaBVLMmgWR0C1PdF8G9pRdX2UKGgGaAloD0MIbywoDMqEFcCUhpRSlGgVSzJoFkdAtT2qxFAmiXV9lChoBmgJaA9DCOgwX16AfRLAlIaUUpRoFUsyaBZHQLU+kNoakyl1fZQoaAZoCWgPQwgs2EY82c0ZwJSGlFKUaBVLMmgWR0C1PnO6iCardX2UKGgGaAloD0MIgEbp0r9kFMCUhpRSlGgVSzJoFkdAtT5UnDziCXV9lChoBmgJaA9DCAh2/BcIUiLAlIaUUpRoFUsyaBZHQLU+LcC5mRN1fZQoaAZoCWgPQwjW/s726F0bwJSGlFKUaBVLMmgWR0C1Pw4DxLCfdX2UKGgGaAloD0MIle6usyH/D8CUhpRSlGgVSzJoFkdAtT7w+Sr5qXV9lChoBmgJaA9DCDI89rNYChXAlIaUUpRoFUsyaBZHQLU+0egctGx1fZQoaAZoCWgPQwjAlezYCPQXwJSGlFKUaBVLMmgWR0C1Pqs052hadX2UKGgGaAloD0MIv36IDRY+GMCUhpRSlGgVSzJoFkdAtT+RyMkyDnV9lChoBmgJaA9DCMxjzcgg1wnAlIaUUpRoFUsyaBZHQLU/dQdjoZB1fZQoaAZoCWgPQwihaB7AIm8ZwJSGlFKUaBVLMmgWR0C1P1X5FgDzdX2UKGgGaAloD0MIpYXLKmx+KcCUhpRSlGgVSzJoFkdAtT8vMX7+DXV9lChoBmgJaA9DCB2qKck6HBPAlIaUUpRoFUsyaBZHQLVAHYbKifx1fZQoaAZoCWgPQwh/oNy27/ELwJSGlFKUaBVLMmgWR0C1QACJXQt0dX2UKGgGaAloD0MI4h3gSQs3GsCUhpRSlGgVSzJoFkdAtT/hWKdhAnV9lChoBmgJaA9DCMvbEU4LrhLAlIaUUpRoFUsyaBZHQLU/utGNJe51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}