edures commited on
Commit
5cc5046
·
1 Parent(s): 5a90ad3

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -1.67 +/- 0.37
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -10.21 +/- 2.84
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:90c70af867df1149ce3e1eba0548f335f089ba49a169f133a0ca8518d4884ec6
3
- size 108037
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d1f22a11bf428e30cddbf0283a12483cac24b626abd510d86b04c7637e17c39
3
+ size 108074
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c3757289bd0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7c375728c680>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,12 +19,12 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 1000000,
23
- "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1690775756881718441,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMHnDPjvXTjyZbhU/MHnDPjvXTjyZbhU/MHnDPjvXTjyZbhU/MHnDPjvXTjyZbhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGh/PPmEHo79J1wQ8Tv3Iv3vtvT9/LJm//AjLP+B+vz85gwC9vFcOvajAXD+CGpy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwecM+O9dOPJluFT/hcZs8BwLZOqBioDswecM+O9dOPJluFT/hcZs8BwLZOqBioDswecM+O9dOPJluFT/hcZs8BwLZOqBioDswecM+O9dOPJluFT/hcZs8BwLZOqBioDuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[0.38178396 0.01262456 0.58371884]\n [0.38178396 0.01262456 0.58371884]\n [0.38178396 0.01262456 0.58371884]\n [0.38178396 0.01262456 0.58371884]]",
38
- "desired_goal": "[[ 0.40453416 -1.2736627 0.00810797]\n [-1.5702302 1.4838098 -1.1966704 ]\n [ 1.5862117 1.4960594 -0.03137514]\n [-0.03475164 0.8623147 -1.219559 ]]",
39
- "observation": "[[0.38178396 0.01262456 0.58371884 0.0189752 0.00165564 0.00489457]\n [0.38178396 0.01262456 0.58371884 0.0189752 0.00165564 0.00489457]\n [0.38178396 0.01262456 0.58371884 0.0189752 0.00165564 0.00489457]\n [0.38178396 0.01262456 0.58371884 0.0189752 0.00165564 0.00489457]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6iRivQHd7r04Wds9aVDDvQUkDD4hTIc+moUIvgEHlL3OSoE9nfyNvSItn72v7xY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[-0.05521099 -0.11663247 0.10710377]\n [-0.09536821 0.13685615 0.2642527 ]\n [-0.13332215 -0.07227898 0.06313096]\n [-0.06932948 -0.0777228 0.1473987 ]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,20 +56,20 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISbn7HB+t/r+UhpRSlIwBbJRLMowBdJRHQKWGirksBhh1fZQoaAZoCWgPQwirz9VW7O8FwJSGlFKUaBVLMmgWR0ClhkoiC8ODdX2UKGgGaAloD0MIdy0hH/Qs9r+UhpRSlGgVSzJoFkdApYYJqwhW53V9lChoBmgJaA9DCMBC5sqgWgnAlIaUUpRoFUsyaBZHQKWFyHlfZ291fZQoaAZoCWgPQwgs2EY82S0BwJSGlFKUaBVLMmgWR0Clh4K0D2aldX2UKGgGaAloD0MI4ScOoN8XAcCUhpRSlGgVSzJoFkdApYdB8pkPMHV9lChoBmgJaA9DCPc96q9XWO+/lIaUUpRoFUsyaBZHQKWHAVrRBu51fZQoaAZoCWgPQwixFTQtsbLxv5SGlFKUaBVLMmgWR0ClhsBEroW6dX2UKGgGaAloD0MI6nk3FhRGBMCUhpRSlGgVSzJoFkdApYh+kgwGnnV9lChoBmgJaA9DCGHCaFa2rwfAlIaUUpRoFUsyaBZHQKWIPdM0xdp1fZQoaAZoCWgPQwgyA5Xx7zP4v5SGlFKUaBVLMmgWR0Clh/1yeZogdX2UKGgGaAloD0MID/Ckhctq+7+UhpRSlGgVSzJoFkdApYe8U9IPLHV9lChoBmgJaA9DCIidKXReAwLAlIaUUpRoFUsyaBZHQKWJhXQMQVd1fZQoaAZoCWgPQwhGs7J9yFsEwJSGlFKUaBVLMmgWR0CliUTLGJemdX2UKGgGaAloD0MIS3UBLzMs87+UhpRSlGgVSzJoFkdApYkENMGorHV9lChoBmgJaA9DCKoNTkS/tvW/lIaUUpRoFUsyaBZHQKWIwzJp35h1fZQoaAZoCWgPQwhzofKv5XUAwJSGlFKUaBVLMmgWR0ClioNzr/sFdX2UKGgGaAloD0MI0LTEymik9L+UhpRSlGgVSzJoFkdApYpCqQzUJHV9lChoBmgJaA9DCGb35GGh9gbAlIaUUpRoFUsyaBZHQKWKAgvDgqF1fZQoaAZoCWgPQwhs7X2qCs3+v5SGlFKUaBVLMmgWR0ClicD15B1LdX2UKGgGaAloD0MI3smnx7aM9r+UhpRSlGgVSzJoFkdApYt7XxvvSnV9lChoBmgJaA9DCMeEmEuqVgDAlIaUUpRoFUsyaBZHQKWLOp7TlT51fZQoaAZoCWgPQwhxqUpbXOP0v5SGlFKUaBVLMmgWR0Clivn6MzdldX2UKGgGaAloD0MI5iSUvhDyCMCUhpRSlGgVSzJoFkdApYq41BMSK3V9lChoBmgJaA9DCMbCEDl9/fi/lIaUUpRoFUsyaBZHQKWMfe/Ho5h1fZQoaAZoCWgPQwjNWDSdnYzzv5SGlFKUaBVLMmgWR0CljD0svqTsdX2UKGgGaAloD0MIhzQqcLKN+r+UhpRSlGgVSzJoFkdApYv8k+otMHV9lChoBmgJaA9DCPuT+NwJdgLAlIaUUpRoFUsyaBZHQKWLu2F36hx1fZQoaAZoCWgPQwgb1lQWhR39v5SGlFKUaBVLMmgWR0CljW9xhlUZdX2UKGgGaAloD0MIJsXHJ2TnAcCUhpRSlGgVSzJoFkdApY0urIYFaHV9lChoBmgJaA9DCBMOvcXDO/O/lIaUUpRoFUsyaBZHQKWM7i1Aqut1fZQoaAZoCWgPQwiJRKFl3X/6v5SGlFKUaBVLMmgWR0CljK0JOWSmdX2UKGgGaAloD0MIQzunWaDd+b+UhpRSlGgVSzJoFkdApY5qJj2Ba3V9lChoBmgJaA9DCFBwsaIGk/u/lIaUUpRoFUsyaBZHQKWOKWl/H5t1fZQoaAZoCWgPQwgrEhPU8K39v5SGlFKUaBVLMmgWR0Cljej9n9NvdX2UKGgGaAloD0MIXHUdqilJ9r+UhpRSlGgVSzJoFkdApY2n2wmmcnV9lChoBmgJaA9DCHLhQEgWsPm/lIaUUpRoFUsyaBZHQKWPbdepn6F1fZQoaAZoCWgPQwhVoYFYNvPxv5SGlFKUaBVLMmgWR0Cljy0lZ5iWdX2UKGgGaAloD0MIG7rZHyj38b+UhpRSlGgVSzJoFkdApY7snkT6BXV9lChoBmgJaA9DCBVUVP1KJwXAlIaUUpRoFUsyaBZHQKWOq4MnZ011fZQoaAZoCWgPQwj5MeauJUQAwJSGlFKUaBVLMmgWR0ClkHXVkMCtdX2UKGgGaAloD0MIbef7qfGS+r+UhpRSlGgVSzJoFkdApZA1As052nV9lChoBmgJaA9DCKD+s+bH3/W/lIaUUpRoFUsyaBZHQKWP9JmNBGB1fZQoaAZoCWgPQwhSt7OvPEj1v5SGlFKUaBVLMmgWR0Clj7N7SiM6dX2UKGgGaAloD0MISE+RQ8QN+7+UhpRSlGgVSzJoFkdApZFx1DBuXXV9lChoBmgJaA9DCH5Rgv5CD/y/lIaUUpRoFUsyaBZHQKWRMRTS9dx1fZQoaAZoCWgPQwgZHvtZLGUFwJSGlFKUaBVLMmgWR0ClkPB5xBE8dX2UKGgGaAloD0MIDk+vlGVI9b+UhpRSlGgVSzJoFkdApZCvSMLncXV9lChoBmgJaA9DCCApIsMqXvy/lIaUUpRoFUsyaBZHQKWSbCk43m51fZQoaAZoCWgPQwid1JelnZryv5SGlFKUaBVLMmgWR0ClkitoBaLXdX2UKGgGaAloD0MIXp7OFaVE/L+UhpRSlGgVSzJoFkdApZHqy4Wk8HV9lChoBmgJaA9DCH0lkBK79vm/lIaUUpRoFUsyaBZHQKWRqaqjrRl1fZQoaAZoCWgPQwjzWZ4Hd+f2v5SGlFKUaBVLMmgWR0Clk2e6qbSadX2UKGgGaAloD0MINjtSfedX/L+UhpRSlGgVSzJoFkdApZMnBJqZdHV9lChoBmgJaA9DCONuEK0VDQDAlIaUUpRoFUsyaBZHQKWS5l4C6pZ1fZQoaAZoCWgPQwiCyY0ia437v5SGlFKUaBVLMmgWR0ClkqV8CxNZdX2UKGgGaAloD0MIS3MrhNUY+r+UhpRSlGgVSzJoFkdApZRup2ll9XV9lChoBmgJaA9DCCNL5ljeFfi/lIaUUpRoFUsyaBZHQKWULh1klNV1fZQoaAZoCWgPQwi5MxMM51r5v5SGlFKUaBVLMmgWR0Clk+2KEWZadX2UKGgGaAloD0MIdqimJOsw+r+UhpRSlGgVSzJoFkdApZOsYGdI5HV9lChoBmgJaA9DCLtgcM0dPfi/lIaUUpRoFUsyaBZHQKWVcMtsen11fZQoaAZoCWgPQwjNBplk5Kz1v5SGlFKUaBVLMmgWR0CllTAM2FWXdX2UKGgGaAloD0MIT7LV5ZRgAcCUhpRSlGgVSzJoFkdApZTvdyksSXV9lChoBmgJaA9DCHwL68a7QwDAlIaUUpRoFUsyaBZHQKWUrlPJq7B1fZQoaAZoCWgPQwhuopbmVqgBwJSGlFKUaBVLMmgWR0CllnedbxEwdX2UKGgGaAloD0MIoOBiRQ1mBMCUhpRSlGgVSzJoFkdApZY23c580HV9lChoBmgJaA9DCDJVMCqpswPAlIaUUpRoFUsyaBZHQKWV9kSVW0Z1fZQoaAZoCWgPQwi932jHDb/yv5SGlFKUaBVLMmgWR0CllbUwi7kGdX2UKGgGaAloD0MIICdMGM3K/b+UhpRSlGgVSzJoFkdApZd3YlIEsHV9lChoBmgJaA9DCO0rD9JTZP+/lIaUUpRoFUsyaBZHQKWXNsImgJ11fZQoaAZoCWgPQwhg6BGj55b2v5SGlFKUaBVLMmgWR0CllvYsd1dPdX2UKGgGaAloD0MI3qrrUE1J97+UhpRSlGgVSzJoFkdApZa1FOO803V9lChoBmgJaA9DCEXY8PRK2f2/lIaUUpRoFUsyaBZHQKWYc7Pppvh1fZQoaAZoCWgPQwgSoKaWrfUAwJSGlFKUaBVLMmgWR0ClmDM7+1jRdX2UKGgGaAloD0MI2XdF8L8V/b+UhpRSlGgVSzJoFkdApZfy0ngHeXV9lChoBmgJaA9DCBGPxMvTefa/lIaUUpRoFUsyaBZHQKWXscsDnvF1fZQoaAZoCWgPQwigVPt0PMYCwJSGlFKUaBVLMmgWR0ClmXcfNiYtdX2UKGgGaAloD0MI1cvvNJlx+b+UhpRSlGgVSzJoFkdApZk2ZRbbDnV9lChoBmgJaA9DCPI/+bt3FADAlIaUUpRoFUsyaBZHQKWY9ck+otN1fZQoaAZoCWgPQwjRPlbw21D4v5SGlFKUaBVLMmgWR0ClmLS1E3KkdX2UKGgGaAloD0MIeei7W1niAsCUhpRSlGgVSzJoFkdApZp9PLxI8XV9lChoBmgJaA9DCLdELjiD3wDAlIaUUpRoFUsyaBZHQKWaPIQvpQl1fZQoaAZoCWgPQwg3jILg8e32v5SGlFKUaBVLMmgWR0ClmfvnbItEdX2UKGgGaAloD0MIiJy+nq/Z/r+UhpRSlGgVSzJoFkdApZm6/sVtXXV9lChoBmgJaA9DCE2giEUMe/m/lIaUUpRoFUsyaBZHQKWbhiMo+fR1fZQoaAZoCWgPQwjgoSjQJzL7v5SGlFKUaBVLMmgWR0Clm0WJ79hrdX2UKGgGaAloD0MIRs7CnnbYAsCUhpRSlGgVSzJoFkdApZsE8zQ/o3V9lChoBmgJaA9DCHu7JTlgNwPAlIaUUpRoFUsyaBZHQKWaxCAMDwJ1fZQoaAZoCWgPQwheSfJc34cBwJSGlFKUaBVLMmgWR0ClnJEofCAMdX2UKGgGaAloD0MIWycuxyuwAMCUhpRSlGgVSzJoFkdApZxQhEBsAXV9lChoBmgJaA9DCCqPboRFRfW/lIaUUpRoFUsyaBZHQKWcD/giu+11fZQoaAZoCWgPQwh6U5EKY4v1v5SGlFKUaBVLMmgWR0Clm8748EFGdX2UKGgGaAloD0MI+IpuvaYHA8CUhpRSlGgVSzJoFkdApZ2Z5iVjZ3V9lChoBmgJaA9DCPQ2NjtS/fS/lIaUUpRoFUsyaBZHQKWdWSlFc6h1fZQoaAZoCWgPQwggfZOmQZH3v5SGlFKUaBVLMmgWR0ClnRifQKKHdX2UKGgGaAloD0MIIZBLHHmAAsCUhpRSlGgVSzJoFkdApZzXmJWNm3V9lChoBmgJaA9DCJBlwcQfhf6/lIaUUpRoFUsyaBZHQKWem66J66d1fZQoaAZoCWgPQwhrnE1HADf/v5SGlFKUaBVLMmgWR0ClnlsDwH7hdX2UKGgGaAloD0MI78UX7fGCBMCUhpRSlGgVSzJoFkdApZ4akAPuonV9lChoBmgJaA9DCED8/Pfgtfm/lIaUUpRoFUsyaBZHQKWd2Y1pCa91ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 50000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
- "gae_lambda": 1.0,
69
  "ent_coef": 0.0,
70
  "vf_coef": 0.5,
71
  "max_grad_norm": 0.5,
72
- "normalize_advantage": false,
73
  "observation_space": {
74
  ":type:": "<class 'gym.spaces.dict.Dict'>",
75
  ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bb51e1ee3b0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7bb51e1dff80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 2000000,
23
+ "_total_timesteps": 2000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1690796109601409280,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHILUPuokiL7X3BA/HILUPuokiL7X3BA/HILUPuokiL7X3BA/HILUPuokiL7X3BA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1/hAvkAYm7/bngk/93nFvqkIEr5YdtO/vPDGP4oahT8uuJG+fczCP7swVL9i3Zc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcgtQ+6iSIvtfcED9sDrU9lgbqvJw6OT0cgtQ+6iSIvtfcED9sDrU9lgbqvJw6OT0cgtQ+6iSIvtfcED9sDrU9lgbqvJw6OT0cgtQ+6iSIvtfcED9sDrU9lgbqvJw6OT2UaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.41505516 -0.26590663 0.56586975]\n [ 0.41505516 -0.26590663 0.56586975]\n [ 0.41505516 -0.26590663 0.56586975]\n [ 0.41505516 -0.26590663 0.56586975]]",
38
+ "desired_goal": "[[-0.18844925 -1.2116776 0.5375802 ]\n [-0.38569614 -0.14261116 -1.6520491 ]\n [ 1.5542216 1.0398724 -0.2846083 ]\n [ 1.5218655 -0.82886857 0.07415272]]",
39
+ "observation": "[[ 0.41505516 -0.26590663 0.56586975 0.08840641 -0.02856759 0.04522191]\n [ 0.41505516 -0.26590663 0.56586975 0.08840641 -0.02856759 0.04522191]\n [ 0.41505516 -0.26590663 0.56586975 0.08840641 -0.02856759 0.04522191]\n [ 0.41505516 -0.26590663 0.56586975 0.08840641 -0.02856759 0.04522191]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxIetPa/xHrwwb5s8ehegPS47sb04HB487EK3vdb1WD02G5g7k5wMPiSHsD3xEBc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.08473161 -0.00970118 0.01897392]\n [ 0.07816978 -0.08653866 0.00965028]\n [-0.08948311 0.05296882 0.00464192]\n [ 0.13731603 0.08619526 0.14752556]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE2ba/pXlHcCUhpRSlIwBbJRLMowBdJRHQLZK72OAAhl1fZQoaAZoCWgPQwgF3V7SGB0jwJSGlFKUaBVLMmgWR0C2Ss+V5a/zdX2UKGgGaAloD0MIDaZh+IjYH8CUhpRSlGgVSzJoFkdAtkqqlLvkR3V9lChoBmgJaA9DCKzmOSLf/SPAlIaUUpRoFUsyaBZHQLZKilq8Djl1fZQoaAZoCWgPQwj7sUl+xGcgwJSGlFKUaBVLMmgWR0C2S4P2Cdz5dX2UKGgGaAloD0MIH6FmSBWlGcCUhpRSlGgVSzJoFkdAtktjq4YrKHV9lChoBmgJaA9DCCkiwyre8CXAlIaUUpRoFUsyaBZHQLZLPq5byH51fZQoaAZoCWgPQwjK372jxrQkwJSGlFKUaBVLMmgWR0C2Sx7xNIsidX2UKGgGaAloD0MIisvxCkQPJ8CUhpRSlGgVSzJoFkdAtkv3IsAeaXV9lChoBmgJaA9DCLByaJHtvCnAlIaUUpRoFUsyaBZHQLZL1uHvc8F1fZQoaAZoCWgPQwjWpxyTxd0kwJSGlFKUaBVLMmgWR0C2S7Hg5zYFdX2UKGgGaAloD0MIiQtAo3QxIcCUhpRSlGgVSzJoFkdAtkuR0p3HJnV9lChoBmgJaA9DCIT1fw7zjSDAlIaUUpRoFUsyaBZHQLZMpMsH0K91fZQoaAZoCWgPQwgbYye8BEchwJSGlFKUaBVLMmgWR0C2TIUWEbo9dX2UKGgGaAloD0MI26LMBpm0H8CUhpRSlGgVSzJoFkdAtkxgWl/H53V9lChoBmgJaA9DCFsiF5zBrxnAlIaUUpRoFUsyaBZHQLZMQMQmNR51fZQoaAZoCWgPQwii7gOQ2qQcwJSGlFKUaBVLMmgWR0C2TWwJb+tKdX2UKGgGaAloD0MI+1qXGqFHJMCUhpRSlGgVSzJoFkdAtk1MGmk30nV9lChoBmgJaA9DCCMsKuJ04iHAlIaUUpRoFUsyaBZHQLZNJ0XP7el1fZQoaAZoCWgPQwgfL6TDQwAmwJSGlFKUaBVLMmgWR0C2TQdMsYl6dX2UKGgGaAloD0MI6BVPPdJgKsCUhpRSlGgVSzJoFkdAtk4sqkM1CXV9lChoBmgJaA9DCHE7NCxGxSnAlIaUUpRoFUsyaBZHQLZODSBK+SN1fZQoaAZoCWgPQwisOxbbpNIYwJSGlFKUaBVLMmgWR0C2TehQizLPdX2UKGgGaAloD0MIEynN5nHIJMCUhpRSlGgVSzJoFkdAtk3Ih/y5JHV9lChoBmgJaA9DCISEKF/QAhzAlIaUUpRoFUsyaBZHQLZO72AG0NV1fZQoaAZoCWgPQwgGn+bkRUYowJSGlFKUaBVLMmgWR0C2Ts+YlY2bdX2UKGgGaAloD0MI0LNZ9bniJ8CUhpRSlGgVSzJoFkdAtk6q6jFhonV9lChoBmgJaA9DCJfJcDyfQRvAlIaUUpRoFUsyaBZHQLZOixsVLzx1fZQoaAZoCWgPQwhP5h99k3YswJSGlFKUaBVLMmgWR0C2T6TFqBVddX2UKGgGaAloD0MI3EduTbodGcCUhpRSlGgVSzJoFkdAtk+EidJ8OXV9lChoBmgJaA9DCA/wpIXL8ibAlIaUUpRoFUsyaBZHQLZPX3EQ5FR1fZQoaAZoCWgPQwj52F2gpEAUwJSGlFKUaBVLMmgWR0C2Tz9zjm0WdX2UKGgGaAloD0MIwxGkUuzYE8CUhpRSlGgVSzJoFkdAtlAYJ5VwP3V9lChoBmgJaA9DCEht4uR+ByXAlIaUUpRoFUsyaBZHQLZP98pkPMB1fZQoaAZoCWgPQwhA+iZNg8IfwJSGlFKUaBVLMmgWR0C2T9KuW8h+dX2UKGgGaAloD0MIbMuAs5QMIsCUhpRSlGgVSzJoFkdAtk+yb1AZ9HV9lChoBmgJaA9DCGKGxhNBTCfAlIaUUpRoFUsyaBZHQLZQlQ/X5Fh1fZQoaAZoCWgPQwjww0FClE8vwJSGlFKUaBVLMmgWR0C2UHS8zyjIdX2UKGgGaAloD0MIJ92WyAV3JcCUhpRSlGgVSzJoFkdAtlBPr8iwCHV9lChoBmgJaA9DCElpNo/D8B/AlIaUUpRoFUsyaBZHQLZQL4yXUpd1fZQoaAZoCWgPQwhgWP58W2AXwJSGlFKUaBVLMmgWR0C2URYDs+mndX2UKGgGaAloD0MIsHCS5o85JcCUhpRSlGgVSzJoFkdAtlD19hJAdHV9lChoBmgJaA9DCKuy74rgxyLAlIaUUpRoFUsyaBZHQLZQ0URWcSZ1fZQoaAZoCWgPQwgcRGtFmwMfwJSGlFKUaBVLMmgWR0C2ULFUADJVdX2UKGgGaAloD0MI3qtWJvyCHcCUhpRSlGgVSzJoFkdAtlGK3OObRXV9lChoBmgJaA9DCORO6WD9pyLAlIaUUpRoFUsyaBZHQLZRao371qZ1fZQoaAZoCWgPQwiAETRmEg0kwJSGlFKUaBVLMmgWR0C2UUWS+xnndX2UKGgGaAloD0MI61VkdECSJ8CUhpRSlGgVSzJoFkdAtlEleE7GN3V9lChoBmgJaA9DCD3RdeEHlyjAlIaUUpRoFUsyaBZHQLZSBm8ujAV1fZQoaAZoCWgPQwjhsgqbAb4fwJSGlFKUaBVLMmgWR0C2UeZjH4oJdX2UKGgGaAloD0MIWFnbFI9zJ8CUhpRSlGgVSzJoFkdAtlHBd5Y5k3V9lChoBmgJaA9DCGfxYmGIPB7AlIaUUpRoFUsyaBZHQLZRoUAksz51fZQoaAZoCWgPQwixpUdTPckowJSGlFKUaBVLMmgWR0C2UnaClJpWdX2UKGgGaAloD0MIPX/aqE53HcCUhpRSlGgVSzJoFkdAtlJWNWEK3XV9lChoBmgJaA9DCA6EZAETaBbAlIaUUpRoFUsyaBZHQLZSMTEzfrN1fZQoaAZoCWgPQwjdsdgmFf0dwJSGlFKUaBVLMmgWR0C2UhEGqxTsdX2UKGgGaAloD0MICklm9Q4vIMCUhpRSlGgVSzJoFkdAtlLzobGWEHV9lChoBmgJaA9DCFKazeMwmCXAlIaUUpRoFUsyaBZHQLZS04ku6Et1fZQoaAZoCWgPQwhLWBtjJ7wkwJSGlFKUaBVLMmgWR0C2Uq55iVjadX2UKGgGaAloD0MILGFtjJ1YJsCUhpRSlGgVSzJoFkdAtlKOOgg5inV9lChoBmgJaA9DCEyOO6WDNSTAlIaUUpRoFUsyaBZHQLZTbzmwJPZ1fZQoaAZoCWgPQwgN+z2xTu0owJSGlFKUaBVLMmgWR0C2U075dnkDdX2UKGgGaAloD0MIayi1F9GWIcCUhpRSlGgVSzJoFkdAtlMp+iJwbXV9lChoBmgJaA9DCN8Xl6q0tR/AlIaUUpRoFUsyaBZHQLZTCeenQ6Z1fZQoaAZoCWgPQwikUYGTbbAmwJSGlFKUaBVLMmgWR0C2U/lGXokidX2UKGgGaAloD0MIKsQj8fLUH8CUhpRSlGgVSzJoFkdAtlPZT2nKn3V9lChoBmgJaA9DCObpXFFK+B/AlIaUUpRoFUsyaBZHQLZTtHTqjah1fZQoaAZoCWgPQwiD+MCO/9IjwJSGlFKUaBVLMmgWR0C2U5VvhqCZdX2UKGgGaAloD0MIHEC/798kJMCUhpRSlGgVSzJoFkdAtlR71qWTo3V9lChoBmgJaA9DCCXqBZ/mpCfAlIaUUpRoFUsyaBZHQLZUW73fygB1fZQoaAZoCWgPQwhvgQTFj1ESwJSGlFKUaBVLMmgWR0C2VDbXDm8vdX2UKGgGaAloD0MI5usy/KdbIsCUhpRSlGgVSzJoFkdAtlQWvJRwZXV9lChoBmgJaA9DCJ0PzxJkRB/AlIaUUpRoFUsyaBZHQLZU/gzxgAp1fZQoaAZoCWgPQwglkX2QZdEbwJSGlFKUaBVLMmgWR0C2VN3B1s+FdX2UKGgGaAloD0MIyCjPvByeIMCUhpRSlGgVSzJoFkdAtlS4uuieunV9lChoBmgJaA9DCIQR+wRQZCDAlIaUUpRoFUsyaBZHQLZUmL8rI5p1fZQoaAZoCWgPQwjgSKDBps4bwJSGlFKUaBVLMmgWR0C2VXa9f1HwdX2UKGgGaAloD0MI/S5szVYmLsCUhpRSlGgVSzJoFkdAtlVWjsUqQXV9lChoBmgJaA9DCIEgQIaOzRrAlIaUUpRoFUsyaBZHQLZVMZLIxQB1fZQoaAZoCWgPQwgHeNLCZfUlwJSGlFKUaBVLMmgWR0C2VRFafSQYdX2UKGgGaAloD0MIXFmis8yKJMCUhpRSlGgVSzJoFkdAtlXy3PRiPXV9lChoBmgJaA9DCOtx32qd8CHAlIaUUpRoFUsyaBZHQLZV0qbBoEl1fZQoaAZoCWgPQwg7GRwlr1YkwJSGlFKUaBVLMmgWR0C2Va3TEzfrdX2UKGgGaAloD0MIn1c89UhTL8CUhpRSlGgVSzJoFkdAtlWN7RfF73V9lChoBmgJaA9DCDkn9tA+hh3AlIaUUpRoFUsyaBZHQLZWcnpB5X51fZQoaAZoCWgPQwjicyfYfy0ZwJSGlFKUaBVLMmgWR0C2VlJ8OTaCdX2UKGgGaAloD0MIRgiPNo6YF8CUhpRSlGgVSzJoFkdAtlYtjPOY6XV9lChoBmgJaA9DCKrzqPi/IxXAlIaUUpRoFUsyaBZHQLZWDZl4C6p1fZQoaAZoCWgPQwiZgF8jSXAZwJSGlFKUaBVLMmgWR0C2VvAQcxTLdX2UKGgGaAloD0MIOlrVko5CLcCUhpRSlGgVSzJoFkdAtlbPrWy1NXV9lChoBmgJaA9DCGRbBpyltB7AlIaUUpRoFUsyaBZHQLZWqp4bCJp1fZQoaAZoCWgPQwi3C811GmkXwJSGlFKUaBVLMmgWR0C2Vop62OQydX2UKGgGaAloD0MIibSNP1FxKsCUhpRSlGgVSzJoFkdAtldiSX+l03V9lChoBmgJaA9DCK+xS1RvdSHAlIaUUpRoFUsyaBZHQLZXQffoA4p1fZQoaAZoCWgPQwjxK9ZwkesewJSGlFKUaBVLMmgWR0C2VxzlkpZwdX2UKGgGaAloD0MIAMl06PQEJ8CUhpRSlGgVSzJoFkdAtlb83YL9dnV9lChoBmgJaA9DCPKXFvVJxi7AlIaUUpRoFUsyaBZHQLZX6/JvHcV1fZQoaAZoCWgPQwhXQndJnLUhwJSGlFKUaBVLMmgWR0C2V8ux8lXzdX2UKGgGaAloD0MIzXNEvktpH8CUhpRSlGgVSzJoFkdAtlemx4Y773V9lChoBmgJaA9DCCdr1EM0yh3AlIaUUpRoFUsyaBZHQLZXhqKgqVh1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 100000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
+ "gae_lambda": 0.99,
69
  "ent_coef": 0.0,
70
  "vf_coef": 0.5,
71
  "max_grad_norm": 0.5,
72
+ "normalize_advantage": true,
73
  "observation_space": {
74
  ":type:": "<class 'gym.spaces.dict.Dict'>",
75
  ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c629fcf7e2d96c06d09ff94c80585bfb1a0eb5f6fc326d10a465a6d029e2d79
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e7132cb49ad5dd2e817d6e5c6e516329379022743be7f64378ff6991518a13d
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f974c6d4f81635d3db8448b0e5d5d7568bb4a34094ea723b5042dd1bdb39520b
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee95b09e6e4018b1a7098097f05daf6e26c7be5b724e1217642518ab2aef5aa8
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c3757289bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c375728c680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690775756881718441, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMHnDPjvXTjyZbhU/MHnDPjvXTjyZbhU/MHnDPjvXTjyZbhU/MHnDPjvXTjyZbhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGh/PPmEHo79J1wQ8Tv3Iv3vtvT9/LJm//AjLP+B+vz85gwC9vFcOvajAXD+CGpy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwecM+O9dOPJluFT/hcZs8BwLZOqBioDswecM+O9dOPJluFT/hcZs8BwLZOqBioDswecM+O9dOPJluFT/hcZs8BwLZOqBioDswecM+O9dOPJluFT/hcZs8BwLZOqBioDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38178396 0.01262456 0.58371884]\n [0.38178396 0.01262456 0.58371884]\n [0.38178396 0.01262456 0.58371884]\n [0.38178396 0.01262456 0.58371884]]", "desired_goal": "[[ 0.40453416 -1.2736627 0.00810797]\n [-1.5702302 1.4838098 -1.1966704 ]\n [ 1.5862117 1.4960594 -0.03137514]\n [-0.03475164 0.8623147 -1.219559 ]]", "observation": "[[0.38178396 0.01262456 0.58371884 0.0189752 0.00165564 0.00489457]\n [0.38178396 0.01262456 0.58371884 0.0189752 0.00165564 0.00489457]\n [0.38178396 0.01262456 0.58371884 0.0189752 0.00165564 0.00489457]\n [0.38178396 0.01262456 0.58371884 0.0189752 0.00165564 0.00489457]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6iRivQHd7r04Wds9aVDDvQUkDD4hTIc+moUIvgEHlL3OSoE9nfyNvSItn72v7xY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05521099 -0.11663247 0.10710377]\n [-0.09536821 0.13685615 0.2642527 ]\n [-0.13332215 -0.07227898 0.06313096]\n [-0.06932948 -0.0777228 0.1473987 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISbn7HB+t/r+UhpRSlIwBbJRLMowBdJRHQKWGirksBhh1fZQoaAZoCWgPQwirz9VW7O8FwJSGlFKUaBVLMmgWR0ClhkoiC8ODdX2UKGgGaAloD0MIdy0hH/Qs9r+UhpRSlGgVSzJoFkdApYYJqwhW53V9lChoBmgJaA9DCMBC5sqgWgnAlIaUUpRoFUsyaBZHQKWFyHlfZ291fZQoaAZoCWgPQwgs2EY82S0BwJSGlFKUaBVLMmgWR0Clh4K0D2aldX2UKGgGaAloD0MI4ScOoN8XAcCUhpRSlGgVSzJoFkdApYdB8pkPMHV9lChoBmgJaA9DCPc96q9XWO+/lIaUUpRoFUsyaBZHQKWHAVrRBu51fZQoaAZoCWgPQwixFTQtsbLxv5SGlFKUaBVLMmgWR0ClhsBEroW6dX2UKGgGaAloD0MI6nk3FhRGBMCUhpRSlGgVSzJoFkdApYh+kgwGnnV9lChoBmgJaA9DCGHCaFa2rwfAlIaUUpRoFUsyaBZHQKWIPdM0xdp1fZQoaAZoCWgPQwgyA5Xx7zP4v5SGlFKUaBVLMmgWR0Clh/1yeZogdX2UKGgGaAloD0MID/Ckhctq+7+UhpRSlGgVSzJoFkdApYe8U9IPLHV9lChoBmgJaA9DCIidKXReAwLAlIaUUpRoFUsyaBZHQKWJhXQMQVd1fZQoaAZoCWgPQwhGs7J9yFsEwJSGlFKUaBVLMmgWR0CliUTLGJemdX2UKGgGaAloD0MIS3UBLzMs87+UhpRSlGgVSzJoFkdApYkENMGorHV9lChoBmgJaA9DCKoNTkS/tvW/lIaUUpRoFUsyaBZHQKWIwzJp35h1fZQoaAZoCWgPQwhzofKv5XUAwJSGlFKUaBVLMmgWR0ClioNzr/sFdX2UKGgGaAloD0MI0LTEymik9L+UhpRSlGgVSzJoFkdApYpCqQzUJHV9lChoBmgJaA9DCGb35GGh9gbAlIaUUpRoFUsyaBZHQKWKAgvDgqF1fZQoaAZoCWgPQwhs7X2qCs3+v5SGlFKUaBVLMmgWR0ClicD15B1LdX2UKGgGaAloD0MI3smnx7aM9r+UhpRSlGgVSzJoFkdApYt7XxvvSnV9lChoBmgJaA9DCMeEmEuqVgDAlIaUUpRoFUsyaBZHQKWLOp7TlT51fZQoaAZoCWgPQwhxqUpbXOP0v5SGlFKUaBVLMmgWR0Clivn6MzdldX2UKGgGaAloD0MI5iSUvhDyCMCUhpRSlGgVSzJoFkdApYq41BMSK3V9lChoBmgJaA9DCMbCEDl9/fi/lIaUUpRoFUsyaBZHQKWMfe/Ho5h1fZQoaAZoCWgPQwjNWDSdnYzzv5SGlFKUaBVLMmgWR0CljD0svqTsdX2UKGgGaAloD0MIhzQqcLKN+r+UhpRSlGgVSzJoFkdApYv8k+otMHV9lChoBmgJaA9DCPuT+NwJdgLAlIaUUpRoFUsyaBZHQKWLu2F36hx1fZQoaAZoCWgPQwgb1lQWhR39v5SGlFKUaBVLMmgWR0CljW9xhlUZdX2UKGgGaAloD0MIJsXHJ2TnAcCUhpRSlGgVSzJoFkdApY0urIYFaHV9lChoBmgJaA9DCBMOvcXDO/O/lIaUUpRoFUsyaBZHQKWM7i1Aqut1fZQoaAZoCWgPQwiJRKFl3X/6v5SGlFKUaBVLMmgWR0CljK0JOWSmdX2UKGgGaAloD0MIQzunWaDd+b+UhpRSlGgVSzJoFkdApY5qJj2Ba3V9lChoBmgJaA9DCFBwsaIGk/u/lIaUUpRoFUsyaBZHQKWOKWl/H5t1fZQoaAZoCWgPQwgrEhPU8K39v5SGlFKUaBVLMmgWR0Cljej9n9NvdX2UKGgGaAloD0MIXHUdqilJ9r+UhpRSlGgVSzJoFkdApY2n2wmmcnV9lChoBmgJaA9DCHLhQEgWsPm/lIaUUpRoFUsyaBZHQKWPbdepn6F1fZQoaAZoCWgPQwhVoYFYNvPxv5SGlFKUaBVLMmgWR0Cljy0lZ5iWdX2UKGgGaAloD0MIG7rZHyj38b+UhpRSlGgVSzJoFkdApY7snkT6BXV9lChoBmgJaA9DCBVUVP1KJwXAlIaUUpRoFUsyaBZHQKWOq4MnZ011fZQoaAZoCWgPQwj5MeauJUQAwJSGlFKUaBVLMmgWR0ClkHXVkMCtdX2UKGgGaAloD0MIbef7qfGS+r+UhpRSlGgVSzJoFkdApZA1As052nV9lChoBmgJaA9DCKD+s+bH3/W/lIaUUpRoFUsyaBZHQKWP9JmNBGB1fZQoaAZoCWgPQwhSt7OvPEj1v5SGlFKUaBVLMmgWR0Clj7N7SiM6dX2UKGgGaAloD0MISE+RQ8QN+7+UhpRSlGgVSzJoFkdApZFx1DBuXXV9lChoBmgJaA9DCH5Rgv5CD/y/lIaUUpRoFUsyaBZHQKWRMRTS9dx1fZQoaAZoCWgPQwgZHvtZLGUFwJSGlFKUaBVLMmgWR0ClkPB5xBE8dX2UKGgGaAloD0MIDk+vlGVI9b+UhpRSlGgVSzJoFkdApZCvSMLncXV9lChoBmgJaA9DCCApIsMqXvy/lIaUUpRoFUsyaBZHQKWSbCk43m51fZQoaAZoCWgPQwid1JelnZryv5SGlFKUaBVLMmgWR0ClkitoBaLXdX2UKGgGaAloD0MIXp7OFaVE/L+UhpRSlGgVSzJoFkdApZHqy4Wk8HV9lChoBmgJaA9DCH0lkBK79vm/lIaUUpRoFUsyaBZHQKWRqaqjrRl1fZQoaAZoCWgPQwjzWZ4Hd+f2v5SGlFKUaBVLMmgWR0Clk2e6qbSadX2UKGgGaAloD0MINjtSfedX/L+UhpRSlGgVSzJoFkdApZMnBJqZdHV9lChoBmgJaA9DCONuEK0VDQDAlIaUUpRoFUsyaBZHQKWS5l4C6pZ1fZQoaAZoCWgPQwiCyY0ia437v5SGlFKUaBVLMmgWR0ClkqV8CxNZdX2UKGgGaAloD0MIS3MrhNUY+r+UhpRSlGgVSzJoFkdApZRup2ll9XV9lChoBmgJaA9DCCNL5ljeFfi/lIaUUpRoFUsyaBZHQKWULh1klNV1fZQoaAZoCWgPQwi5MxMM51r5v5SGlFKUaBVLMmgWR0Clk+2KEWZadX2UKGgGaAloD0MIdqimJOsw+r+UhpRSlGgVSzJoFkdApZOsYGdI5HV9lChoBmgJaA9DCLtgcM0dPfi/lIaUUpRoFUsyaBZHQKWVcMtsen11fZQoaAZoCWgPQwjNBplk5Kz1v5SGlFKUaBVLMmgWR0CllTAM2FWXdX2UKGgGaAloD0MIT7LV5ZRgAcCUhpRSlGgVSzJoFkdApZTvdyksSXV9lChoBmgJaA9DCHwL68a7QwDAlIaUUpRoFUsyaBZHQKWUrlPJq7B1fZQoaAZoCWgPQwhuopbmVqgBwJSGlFKUaBVLMmgWR0CllnedbxEwdX2UKGgGaAloD0MIoOBiRQ1mBMCUhpRSlGgVSzJoFkdApZY23c580HV9lChoBmgJaA9DCDJVMCqpswPAlIaUUpRoFUsyaBZHQKWV9kSVW0Z1fZQoaAZoCWgPQwi932jHDb/yv5SGlFKUaBVLMmgWR0CllbUwi7kGdX2UKGgGaAloD0MIICdMGM3K/b+UhpRSlGgVSzJoFkdApZd3YlIEsHV9lChoBmgJaA9DCO0rD9JTZP+/lIaUUpRoFUsyaBZHQKWXNsImgJ11fZQoaAZoCWgPQwhg6BGj55b2v5SGlFKUaBVLMmgWR0CllvYsd1dPdX2UKGgGaAloD0MI3qrrUE1J97+UhpRSlGgVSzJoFkdApZa1FOO803V9lChoBmgJaA9DCEXY8PRK2f2/lIaUUpRoFUsyaBZHQKWYc7Pppvh1fZQoaAZoCWgPQwgSoKaWrfUAwJSGlFKUaBVLMmgWR0ClmDM7+1jRdX2UKGgGaAloD0MI2XdF8L8V/b+UhpRSlGgVSzJoFkdApZfy0ngHeXV9lChoBmgJaA9DCBGPxMvTefa/lIaUUpRoFUsyaBZHQKWXscsDnvF1fZQoaAZoCWgPQwigVPt0PMYCwJSGlFKUaBVLMmgWR0ClmXcfNiYtdX2UKGgGaAloD0MI1cvvNJlx+b+UhpRSlGgVSzJoFkdApZk2ZRbbDnV9lChoBmgJaA9DCPI/+bt3FADAlIaUUpRoFUsyaBZHQKWY9ck+otN1fZQoaAZoCWgPQwjRPlbw21D4v5SGlFKUaBVLMmgWR0ClmLS1E3KkdX2UKGgGaAloD0MIeei7W1niAsCUhpRSlGgVSzJoFkdApZp9PLxI8XV9lChoBmgJaA9DCLdELjiD3wDAlIaUUpRoFUsyaBZHQKWaPIQvpQl1fZQoaAZoCWgPQwg3jILg8e32v5SGlFKUaBVLMmgWR0ClmfvnbItEdX2UKGgGaAloD0MIiJy+nq/Z/r+UhpRSlGgVSzJoFkdApZm6/sVtXXV9lChoBmgJaA9DCE2giEUMe/m/lIaUUpRoFUsyaBZHQKWbhiMo+fR1fZQoaAZoCWgPQwjgoSjQJzL7v5SGlFKUaBVLMmgWR0Clm0WJ79hrdX2UKGgGaAloD0MIRs7CnnbYAsCUhpRSlGgVSzJoFkdApZsE8zQ/o3V9lChoBmgJaA9DCHu7JTlgNwPAlIaUUpRoFUsyaBZHQKWaxCAMDwJ1fZQoaAZoCWgPQwheSfJc34cBwJSGlFKUaBVLMmgWR0ClnJEofCAMdX2UKGgGaAloD0MIWycuxyuwAMCUhpRSlGgVSzJoFkdApZxQhEBsAXV9lChoBmgJaA9DCCqPboRFRfW/lIaUUpRoFUsyaBZHQKWcD/giu+11fZQoaAZoCWgPQwh6U5EKY4v1v5SGlFKUaBVLMmgWR0Clm8748EFGdX2UKGgGaAloD0MI+IpuvaYHA8CUhpRSlGgVSzJoFkdApZ2Z5iVjZ3V9lChoBmgJaA9DCPQ2NjtS/fS/lIaUUpRoFUsyaBZHQKWdWSlFc6h1fZQoaAZoCWgPQwggfZOmQZH3v5SGlFKUaBVLMmgWR0ClnRifQKKHdX2UKGgGaAloD0MIIZBLHHmAAsCUhpRSlGgVSzJoFkdApZzXmJWNm3V9lChoBmgJaA9DCJBlwcQfhf6/lIaUUpRoFUsyaBZHQKWem66J66d1fZQoaAZoCWgPQwhrnE1HADf/v5SGlFKUaBVLMmgWR0ClnlsDwH7hdX2UKGgGaAloD0MI78UX7fGCBMCUhpRSlGgVSzJoFkdApZ4akAPuonV9lChoBmgJaA9DCED8/Pfgtfm/lIaUUpRoFUsyaBZHQKWd2Y1pCa91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bb51e1ee3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb51e1dff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690796109601409280, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHILUPuokiL7X3BA/HILUPuokiL7X3BA/HILUPuokiL7X3BA/HILUPuokiL7X3BA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1/hAvkAYm7/bngk/93nFvqkIEr5YdtO/vPDGP4oahT8uuJG+fczCP7swVL9i3Zc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcgtQ+6iSIvtfcED9sDrU9lgbqvJw6OT0cgtQ+6iSIvtfcED9sDrU9lgbqvJw6OT0cgtQ+6iSIvtfcED9sDrU9lgbqvJw6OT0cgtQ+6iSIvtfcED9sDrU9lgbqvJw6OT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41505516 -0.26590663 0.56586975]\n [ 0.41505516 -0.26590663 0.56586975]\n [ 0.41505516 -0.26590663 0.56586975]\n [ 0.41505516 -0.26590663 0.56586975]]", "desired_goal": "[[-0.18844925 -1.2116776 0.5375802 ]\n [-0.38569614 -0.14261116 -1.6520491 ]\n [ 1.5542216 1.0398724 -0.2846083 ]\n [ 1.5218655 -0.82886857 0.07415272]]", "observation": "[[ 0.41505516 -0.26590663 0.56586975 0.08840641 -0.02856759 0.04522191]\n [ 0.41505516 -0.26590663 0.56586975 0.08840641 -0.02856759 0.04522191]\n [ 0.41505516 -0.26590663 0.56586975 0.08840641 -0.02856759 0.04522191]\n [ 0.41505516 -0.26590663 0.56586975 0.08840641 -0.02856759 0.04522191]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxIetPa/xHrwwb5s8ehegPS47sb04HB487EK3vdb1WD02G5g7k5wMPiSHsD3xEBc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08473161 -0.00970118 0.01897392]\n [ 0.07816978 -0.08653866 0.00965028]\n [-0.08948311 0.05296882 0.00464192]\n [ 0.13731603 0.08619526 0.14752556]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE2ba/pXlHcCUhpRSlIwBbJRLMowBdJRHQLZK72OAAhl1fZQoaAZoCWgPQwgF3V7SGB0jwJSGlFKUaBVLMmgWR0C2Ss+V5a/zdX2UKGgGaAloD0MIDaZh+IjYH8CUhpRSlGgVSzJoFkdAtkqqlLvkR3V9lChoBmgJaA9DCKzmOSLf/SPAlIaUUpRoFUsyaBZHQLZKilq8Djl1fZQoaAZoCWgPQwj7sUl+xGcgwJSGlFKUaBVLMmgWR0C2S4P2Cdz5dX2UKGgGaAloD0MIH6FmSBWlGcCUhpRSlGgVSzJoFkdAtktjq4YrKHV9lChoBmgJaA9DCCkiwyre8CXAlIaUUpRoFUsyaBZHQLZLPq5byH51fZQoaAZoCWgPQwjK372jxrQkwJSGlFKUaBVLMmgWR0C2Sx7xNIsidX2UKGgGaAloD0MIisvxCkQPJ8CUhpRSlGgVSzJoFkdAtkv3IsAeaXV9lChoBmgJaA9DCLByaJHtvCnAlIaUUpRoFUsyaBZHQLZL1uHvc8F1fZQoaAZoCWgPQwjWpxyTxd0kwJSGlFKUaBVLMmgWR0C2S7Hg5zYFdX2UKGgGaAloD0MIiQtAo3QxIcCUhpRSlGgVSzJoFkdAtkuR0p3HJnV9lChoBmgJaA9DCIT1fw7zjSDAlIaUUpRoFUsyaBZHQLZMpMsH0K91fZQoaAZoCWgPQwgbYye8BEchwJSGlFKUaBVLMmgWR0C2TIUWEbo9dX2UKGgGaAloD0MI26LMBpm0H8CUhpRSlGgVSzJoFkdAtkxgWl/H53V9lChoBmgJaA9DCFsiF5zBrxnAlIaUUpRoFUsyaBZHQLZMQMQmNR51fZQoaAZoCWgPQwii7gOQ2qQcwJSGlFKUaBVLMmgWR0C2TWwJb+tKdX2UKGgGaAloD0MI+1qXGqFHJMCUhpRSlGgVSzJoFkdAtk1MGmk30nV9lChoBmgJaA9DCCMsKuJ04iHAlIaUUpRoFUsyaBZHQLZNJ0XP7el1fZQoaAZoCWgPQwgfL6TDQwAmwJSGlFKUaBVLMmgWR0C2TQdMsYl6dX2UKGgGaAloD0MI6BVPPdJgKsCUhpRSlGgVSzJoFkdAtk4sqkM1CXV9lChoBmgJaA9DCHE7NCxGxSnAlIaUUpRoFUsyaBZHQLZODSBK+SN1fZQoaAZoCWgPQwisOxbbpNIYwJSGlFKUaBVLMmgWR0C2TehQizLPdX2UKGgGaAloD0MIEynN5nHIJMCUhpRSlGgVSzJoFkdAtk3Ih/y5JHV9lChoBmgJaA9DCISEKF/QAhzAlIaUUpRoFUsyaBZHQLZO72AG0NV1fZQoaAZoCWgPQwgGn+bkRUYowJSGlFKUaBVLMmgWR0C2Ts+YlY2bdX2UKGgGaAloD0MI0LNZ9bniJ8CUhpRSlGgVSzJoFkdAtk6q6jFhonV9lChoBmgJaA9DCJfJcDyfQRvAlIaUUpRoFUsyaBZHQLZOixsVLzx1fZQoaAZoCWgPQwhP5h99k3YswJSGlFKUaBVLMmgWR0C2T6TFqBVddX2UKGgGaAloD0MI3EduTbodGcCUhpRSlGgVSzJoFkdAtk+EidJ8OXV9lChoBmgJaA9DCA/wpIXL8ibAlIaUUpRoFUsyaBZHQLZPX3EQ5FR1fZQoaAZoCWgPQwj52F2gpEAUwJSGlFKUaBVLMmgWR0C2Tz9zjm0WdX2UKGgGaAloD0MIwxGkUuzYE8CUhpRSlGgVSzJoFkdAtlAYJ5VwP3V9lChoBmgJaA9DCEht4uR+ByXAlIaUUpRoFUsyaBZHQLZP98pkPMB1fZQoaAZoCWgPQwhA+iZNg8IfwJSGlFKUaBVLMmgWR0C2T9KuW8h+dX2UKGgGaAloD0MIbMuAs5QMIsCUhpRSlGgVSzJoFkdAtk+yb1AZ9HV9lChoBmgJaA9DCGKGxhNBTCfAlIaUUpRoFUsyaBZHQLZQlQ/X5Fh1fZQoaAZoCWgPQwjww0FClE8vwJSGlFKUaBVLMmgWR0C2UHS8zyjIdX2UKGgGaAloD0MIJ92WyAV3JcCUhpRSlGgVSzJoFkdAtlBPr8iwCHV9lChoBmgJaA9DCElpNo/D8B/AlIaUUpRoFUsyaBZHQLZQL4yXUpd1fZQoaAZoCWgPQwhgWP58W2AXwJSGlFKUaBVLMmgWR0C2URYDs+mndX2UKGgGaAloD0MIsHCS5o85JcCUhpRSlGgVSzJoFkdAtlD19hJAdHV9lChoBmgJaA9DCKuy74rgxyLAlIaUUpRoFUsyaBZHQLZQ0URWcSZ1fZQoaAZoCWgPQwgcRGtFmwMfwJSGlFKUaBVLMmgWR0C2ULFUADJVdX2UKGgGaAloD0MI3qtWJvyCHcCUhpRSlGgVSzJoFkdAtlGK3OObRXV9lChoBmgJaA9DCORO6WD9pyLAlIaUUpRoFUsyaBZHQLZRao371qZ1fZQoaAZoCWgPQwiAETRmEg0kwJSGlFKUaBVLMmgWR0C2UUWS+xnndX2UKGgGaAloD0MI61VkdECSJ8CUhpRSlGgVSzJoFkdAtlEleE7GN3V9lChoBmgJaA9DCD3RdeEHlyjAlIaUUpRoFUsyaBZHQLZSBm8ujAV1fZQoaAZoCWgPQwjhsgqbAb4fwJSGlFKUaBVLMmgWR0C2UeZjH4oJdX2UKGgGaAloD0MIWFnbFI9zJ8CUhpRSlGgVSzJoFkdAtlHBd5Y5k3V9lChoBmgJaA9DCGfxYmGIPB7AlIaUUpRoFUsyaBZHQLZRoUAksz51fZQoaAZoCWgPQwixpUdTPckowJSGlFKUaBVLMmgWR0C2UnaClJpWdX2UKGgGaAloD0MIPX/aqE53HcCUhpRSlGgVSzJoFkdAtlJWNWEK3XV9lChoBmgJaA9DCA6EZAETaBbAlIaUUpRoFUsyaBZHQLZSMTEzfrN1fZQoaAZoCWgPQwjdsdgmFf0dwJSGlFKUaBVLMmgWR0C2UhEGqxTsdX2UKGgGaAloD0MICklm9Q4vIMCUhpRSlGgVSzJoFkdAtlLzobGWEHV9lChoBmgJaA9DCFKazeMwmCXAlIaUUpRoFUsyaBZHQLZS04ku6Et1fZQoaAZoCWgPQwhLWBtjJ7wkwJSGlFKUaBVLMmgWR0C2Uq55iVjadX2UKGgGaAloD0MILGFtjJ1YJsCUhpRSlGgVSzJoFkdAtlKOOgg5inV9lChoBmgJaA9DCEyOO6WDNSTAlIaUUpRoFUsyaBZHQLZTbzmwJPZ1fZQoaAZoCWgPQwgN+z2xTu0owJSGlFKUaBVLMmgWR0C2U075dnkDdX2UKGgGaAloD0MIayi1F9GWIcCUhpRSlGgVSzJoFkdAtlMp+iJwbXV9lChoBmgJaA9DCN8Xl6q0tR/AlIaUUpRoFUsyaBZHQLZTCeenQ6Z1fZQoaAZoCWgPQwikUYGTbbAmwJSGlFKUaBVLMmgWR0C2U/lGXokidX2UKGgGaAloD0MIKsQj8fLUH8CUhpRSlGgVSzJoFkdAtlPZT2nKn3V9lChoBmgJaA9DCObpXFFK+B/AlIaUUpRoFUsyaBZHQLZTtHTqjah1fZQoaAZoCWgPQwiD+MCO/9IjwJSGlFKUaBVLMmgWR0C2U5VvhqCZdX2UKGgGaAloD0MIHEC/798kJMCUhpRSlGgVSzJoFkdAtlR71qWTo3V9lChoBmgJaA9DCCXqBZ/mpCfAlIaUUpRoFUsyaBZHQLZUW73fygB1fZQoaAZoCWgPQwhvgQTFj1ESwJSGlFKUaBVLMmgWR0C2VDbXDm8vdX2UKGgGaAloD0MI5usy/KdbIsCUhpRSlGgVSzJoFkdAtlQWvJRwZXV9lChoBmgJaA9DCJ0PzxJkRB/AlIaUUpRoFUsyaBZHQLZU/gzxgAp1fZQoaAZoCWgPQwglkX2QZdEbwJSGlFKUaBVLMmgWR0C2VN3B1s+FdX2UKGgGaAloD0MIyCjPvByeIMCUhpRSlGgVSzJoFkdAtlS4uuieunV9lChoBmgJaA9DCIQR+wRQZCDAlIaUUpRoFUsyaBZHQLZUmL8rI5p1fZQoaAZoCWgPQwjgSKDBps4bwJSGlFKUaBVLMmgWR0C2VXa9f1HwdX2UKGgGaAloD0MI/S5szVYmLsCUhpRSlGgVSzJoFkdAtlVWjsUqQXV9lChoBmgJaA9DCIEgQIaOzRrAlIaUUpRoFUsyaBZHQLZVMZLIxQB1fZQoaAZoCWgPQwgHeNLCZfUlwJSGlFKUaBVLMmgWR0C2VRFafSQYdX2UKGgGaAloD0MIXFmis8yKJMCUhpRSlGgVSzJoFkdAtlXy3PRiPXV9lChoBmgJaA9DCOtx32qd8CHAlIaUUpRoFUsyaBZHQLZV0qbBoEl1fZQoaAZoCWgPQwg7GRwlr1YkwJSGlFKUaBVLMmgWR0C2Va3TEzfrdX2UKGgGaAloD0MIn1c89UhTL8CUhpRSlGgVSzJoFkdAtlWN7RfF73V9lChoBmgJaA9DCDkn9tA+hh3AlIaUUpRoFUsyaBZHQLZWcnpB5X51fZQoaAZoCWgPQwjicyfYfy0ZwJSGlFKUaBVLMmgWR0C2VlJ8OTaCdX2UKGgGaAloD0MIRgiPNo6YF8CUhpRSlGgVSzJoFkdAtlYtjPOY6XV9lChoBmgJaA9DCKrzqPi/IxXAlIaUUpRoFUsyaBZHQLZWDZl4C6p1fZQoaAZoCWgPQwiZgF8jSXAZwJSGlFKUaBVLMmgWR0C2VvAQcxTLdX2UKGgGaAloD0MIOlrVko5CLcCUhpRSlGgVSzJoFkdAtlbPrWy1NXV9lChoBmgJaA9DCGRbBpyltB7AlIaUUpRoFUsyaBZHQLZWqp4bCJp1fZQoaAZoCWgPQwi3C811GmkXwJSGlFKUaBVLMmgWR0C2Vop62OQydX2UKGgGaAloD0MIibSNP1FxKsCUhpRSlGgVSzJoFkdAtldiSX+l03V9lChoBmgJaA9DCK+xS1RvdSHAlIaUUpRoFUsyaBZHQLZXQffoA4p1fZQoaAZoCWgPQwjxK9ZwkesewJSGlFKUaBVLMmgWR0C2VxzlkpZwdX2UKGgGaAloD0MIAMl06PQEJ8CUhpRSlGgVSzJoFkdAtlb83YL9dnV9lChoBmgJaA9DCPKXFvVJxi7AlIaUUpRoFUsyaBZHQLZX6/JvHcV1fZQoaAZoCWgPQwhXQndJnLUhwJSGlFKUaBVLMmgWR0C2V8ux8lXzdX2UKGgGaAloD0MIzXNEvktpH8CUhpRSlGgVSzJoFkdAtlemx4Y773V9lChoBmgJaA9DCCdr1EM0yh3AlIaUUpRoFUsyaBZHQLZXhqKgqVh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -1.666860981658101, "std_reward": 0.36827384132468005, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T04:42:30.737382"}
 
1
+ {"mean_reward": -10.211152095627039, "std_reward": 2.83778044713509, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T11:11:22.968274"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4fdc76bf31ebb3d3cc3f426269e0f0307f856667321401f94d06b10ab95e9074
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50dbbfb5171d6aecb05dae50296d10c153d27003cbefa8bc90815d6f1f416ca3
3
  size 2387