ppo-LunarLander-v2 / config.json
edures's picture
Upload PPO LunarLander-v2 trained agent
d787239
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e07b49256c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e07b4925750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e07b49257e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e07b4925870>", "_build": "<function ActorCriticPolicy._build at 0x7e07b4925900>", "forward": "<function ActorCriticPolicy.forward at 0x7e07b4925990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e07b4925a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e07b4925ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e07b4925b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e07b4925bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e07b4925c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e07b4925cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e07b4928c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691462401771794622, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMisjz71Po9HOg5PXVXmr4bhIA9UDViPQAAAAAAAAAAzZuqPBVyuT8r0gY/ohbDPllbwrwCnPG9AAAAAAAAAACaL3Q8FJDauvXVobvK+oM8XKGxOyVsZb0AAIA/AACAP5qZxDoUZ34+CKP6PU1EtL5B7tw9m8ZLPAAAAAAAAAAAg9NXvk1KAj+Y3mM+i03DvgaAmL2IPDk+AAAAAAAAAADm7w09QGi6P3CZ7D39hoO+62sovMGEhD0AAAAAAAAAAM2SBL36CyA+fg+GvpdKeb5iMxG+aFRgPQAAAAAAAAAATd2uPScDfz7eUYM8jr6rvswdtD1FxRw+AAAAAAAAAAATPCg+vT5PPgUo5r4NNDa+bRGpvdDMzbsAAAAAAAAAAE0xmD3d9EI/lUTqPX7kAr8XEZU96KrXPQAAAAAAAAAAc08WPkHoGT/TNeW9j5ywvjpGxrsDyti7AAAAAAAAAAAzTcA96qijP6o/IT7qVCS/m+5FPdJSAT4AAAAAAAAAALOKD73txqM/+MMTvksRBL8KPQK+/bwYvgAAAAAAAAAAmn7hvIWT57lV4aE8N1KENuEUUDoag4M1AAAAAAAAgD+matq9uiKpP+QKH78xxs++scu8vU5FwL4AAAAAAAAAAIB0170UOIG6K4msN8kvijKeO9q66iHJtgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE7ICnxaxHKMAWyUS7CMAXSUR0CgNoV9F4LUdX2UKGgGR0BzhIWP91loaAdL4WgIR0CgNo6jN6gNdX2UKGgGR0BuK37iyY5UaAdL3mgIR0CgNttf5ULldX2UKGgGR0Bu0G6shgVoaAdNHgFoCEdAoDbekcjqwHV9lChoBkdAcXdOiFj/dmgHS+doCEdAoDb1KNAC4nV9lChoBkdAcc21cdHUdGgHS+xoCEdAoDeYCW/rSnV9lChoBkdAcIlWo3rD62gHS/BoCEdAoDhMq6OHWXV9lChoBkdAcZdQJXyRS2gHS9hoCEdAoDj3D1oQF3V9lChoBkdAbwlP6be/H2gHS/hoCEdAoDmA8U21lXV9lChoBkdAcQ4hF3IMjWgHS/poCEdAoDmUuYhManV9lChoBkdAcnGCcPOIImgHS8hoCEdAoDnysjmjkHV9lChoBkdAc5jR7JGOMmgHS9doCEdAoDn3Ye1a4nV9lChoBkdAcSiufVZs9GgHS+loCEdAoDplSQ5my3V9lChoBkdAclrp/PPcBWgHS+hoCEdAoDqDgn+hoXV9lChoBkdAc5gwcHWz4WgHS+toCEdAoDr3Olfqo3V9lChoBkdAcIOr433pOmgHS/JoCEdAoDsUWXTmXHV9lChoBkdAchaoTPBzm2gHTXwBaAhHQKA7IMBp5/t1fZQoaAZHQHNi/K+zt1JoB0v2aAhHQKA7QTJyQxN1fZQoaAZHQHKr6cRUWEdoB0vhaAhHQKA7l20Re1N1fZQoaAZHQG+DyJ9AoodoB0vraAhHQKA8YAYHgP51fZQoaAZHQHB3pL7GecxoB0viaAhHQKA80Kb8WKx1fZQoaAZHQHLKanaWX1JoB00fAmgIR0CgPQRiw0O3dX2UKGgGR0BxcVmpVCHAaAdL2WgIR0CgPS4axX4kdX2UKGgGR0BxXtas6q82aAdL0GgIR0CgPVhYNiH7dX2UKGgGR0BwQaCK77KraAdL0mgIR0CgPV7o0Q9SdX2UKGgGR0BxI4HhS9/SaAdLxGgIR0CgPYP5YYBOdX2UKGgGR0Bx/loSL61taAdNCQFoCEdAoD3Vw71ZknV9lChoBkdAcbrmmtQsPWgHS9ZoCEdAoD3bvNNahnV9lChoBkdAcrQCp3os7WgHS9poCEdAoD5NENOM2nV9lChoBkdAcSBHKwIMSmgHTXwDaAhHQKA+mz3yqdZ1fZQoaAZHQHMR4a5wwTNoB00BAWgIR0CgPv2MS9M9dX2UKGgGR0BvpbjxTbWVaAdL/mgIR0CgPvx2KVIJdX2UKGgGR0Bzf3RrrPdEaAdNxQJoCEdAoEiZisny/nV9lChoBkdAcrvtVJcxCmgHTTIBaAhHQKBIuml67d11fZQoaAZHQHCaveP7vXtoB00fAWgIR0CgSMkC3gDSdX2UKGgGR0Byb3vCuU2UaAdL9WgIR0CgSVKS5iEydX2UKGgGR0ByfyRZEDyOaAdL7mgIR0CgSWfHYHxCdX2UKGgGR0BxBCbWmP5paAdL/WgIR0CgScse4kNXdX2UKGgGR0ByKMFxGUfQaAdL9mgIR0CgSdmUfPondX2UKGgGR0BzQX4ubqhUaAdL2GgIR0CgSe+J53TvdX2UKGgGR0ByFhs7+1jRaAdNGwFoCEdAoEqleQdS23V9lChoBkdAcVIGfwqiGmgHTToBaAhHQKBLA50bLlp1fZQoaAZHQHHt4bsF+uxoB0vSaAhHQKBLFrN4Z/F1fZQoaAZHQHDNAZbY9PloB00hAWgIR0CgSyDriVB2dX2UKGgGR0BteWI2wV0taAdL22gIR0CgSzjNQj2SdX2UKGgGR0BxWJqWTot+aAdNCwFoCEdAoEtB6hQFcXV9lChoBkdAcnnp1ie/YmgHTSEBaAhHQKBL0tfXwsp1fZQoaAZHQHOeoxpL26FoB0vUaAhHQKBL/bKzRhN1fZQoaAZHQG7syd4FA3VoB0vZaAhHQKBMAlchTwV1fZQoaAZHQHGs+Zb6guhoB0viaAhHQKBMBfcer+51fZQoaAZHQHHcl2icoYxoB0vMaAhHQKBM1ngYP5J1fZQoaAZHQHCKiS3b215oB0vqaAhHQKBM1L2YfGN1fZQoaAZHQHN7XMUypJhoB0vmaAhHQKBM2wL3K0V1fZQoaAZHQG70y4vvjOtoB0vTaAhHQKBM+ZNO/L11fZQoaAZHQFEBouf29L9oB0uYaAhHQKBNHE61b7l1fZQoaAZHQHAKYcinpB5oB0v2aAhHQKBNg/h2nsN1fZQoaAZHQG/LbFsHjZNoB0vUaAhHQKBODLlFMIx1fZQoaAZHQHOmrCBPKuBoB0vXaAhHQKBOMh9LHuJ1fZQoaAZHQHG/W5MDfWNoB01pAmgIR0CgTmACOmzjdX2UKGgGR0BxOhlMAWBSaAdNDQFoCEdAoE56qOtGNXV9lChoBkdAcl457PY4AGgHS/hoCEdAoE62Lm6oVHV9lChoBkdAcdIx/d69kGgHS9BoCEdAoE6+za9K3HV9lChoBkdAcdYPOpsGgWgHS9xoCEdAoE8PEhq0t3V9lChoBkdAcsZccENe+mgHS+toCEdAoE9Lqv/za3V9lChoBkdAcOhGM4tHx2gHTTUBaAhHQKBPYLWqcVh1fZQoaAZHQHImSBXjlxRoB00OAWgIR0CgT8FHJ9y+dX2UKGgGR0Byx8NKAavSaAdL1WgIR0CgT8mwA2hqdX2UKGgGR0Bzqmby6MBIaAdL1GgIR0CgUArt3OfNdX2UKGgGR0BzRUy/KyOaaAdL7GgIR0CgUBNLUTcqdX2UKGgGR0Byi+N6w+t9aAdL6mgIR0CgUDCjL0SRdX2UKGgGR0BySBEYwZflaAdNBAFoCEdAoFBnr8iwCHV9lChoBkdAcK1KBNEgGWgHS9hoCEdAoFB56Skj5nV9lChoBkdAb0PmnwXqJWgHS95oCEdAoFEHYHxBmnV9lChoBkdAcwhV8Ti84GgHS+xoCEdAoFFddAxBV3V9lChoBkdAcrOnuRcNY2gHS/NoCEdAoFGhwwTM7nV9lChoBkdAcZy07KaG6GgHS89oCEdAoFIccp9ZzXV9lChoBkdAclZPuG9HtmgHTQwBaAhHQKBSIbQTmGN1fZQoaAZHQHMEC79Q40doB0v+aAhHQKBSLd7fHgh1fZQoaAZHQHIcFOj7AL1oB00BAWgIR0CgUkH4XXRPdX2UKGgGR0Bxt9o6CDmKaAdLwmgIR0CgUm7NKRMfdX2UKGgGR0BxCwVN5+pgaAdL92gIR0CgUnaQ/5ckdX2UKGgGR0BxYUAQxvehaAdL42gIR0CgUuT8P4EfdX2UKGgGR0ByF8wvg3tKaAdNAgFoCEdAoFLl9v0h/3V9lChoBkdAbj5RR/EwWWgHS9hoCEdAoFMIyylennV9lChoBkdAcRPGYKIBR2gHS+RoCEdAoFMmZJCjUXV9lChoBkdAcocVbzK9wmgHTQEBaAhHQKBTpypaRp11fZQoaAZHQHK384T9KmNoB0vyaAhHQKBTwfHxSYR1fZQoaAZHQHNFtWU8mrtoB0v+aAhHQKBT1kbxVhl1fZQoaAZHQHM2PGp++dtoB0vuaAhHQKBURp6hQFd1fZQoaAZHQG7r3Q2MsH1oB0veaAhHQKBUYcAiml91fZQoaAZHQHJEMifQKKJoB0vQaAhHQKBUcqvNeMR1fZQoaAZHQHGSMPnSv1VoB0u9aAhHQKBUnkCmuT11fZQoaAZHQHO/i75Ec81oB0vMaAhHQKBU1n27FsJ1fZQoaAZHQHLjvEOy3TdoB0vVaAhHQKBVBOymhuh1fZQoaAZHQHDog6U7jkxoB0vRaAhHQKBVHtx+8Xh1fZQoaAZHQHIrt7fHggpoB00KAWgIR0CgVZkd3jdYdX2UKGgGR0BuXhYaHbh4aAdL0mgIR0CgVeSCFsYVdX2UKGgGR0BxuojzI3iraAdNDAFoCEdAoFXxs67ulXV9lChoBkdAcIif0VafSWgHS+ZoCEdAoFYJ3NcGDHV9lChoBkdAciY2JSBK+WgHS/1oCEdAoFYzk6tDD3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}