eibeel commited on
Commit
666d29c
·
verified ·
1 Parent(s): ffb1ff8

Upload 2 files

Browse files
Files changed (2) hide show
  1. GPT_RAG.py +200 -0
  2. RAG_Datos.json +0 -0
GPT_RAG.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """nomic_embedding_rag.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1vAQoZx_07yU0nVCkFxJQkcVeymgNpzFF
8
+ """
9
+
10
+ !pip install nomic
11
+ !pip install --upgrade langchain
12
+
13
+ ! nomic login
14
+
15
+ ! nomic login nk-bqukmTuFJHW8tgXzXXBw1qDL062-pth-ACecKP7CkXs
16
+
17
+ ! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain
18
+
19
+ # Optional: LangSmith API keys
20
+ import os
21
+
22
+ os.environ["LANGCHAIN_TRACING_V2"] = "true"
23
+ os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
24
+ os.environ["LANGCHAIN_API_KEY"] = "api_key"
25
+
26
+ """## Document Loading
27
+
28
+ Let's test 3 interesting blog posts.
29
+ """
30
+
31
+ import json
32
+ from langchain_community.document_loaders import JSONLoader
33
+ from langchain.docstore.document import Document
34
+
35
+ # Define el JSONLoader para cargar y procesar cada mensaje del JSON
36
+ class JSONLoader:
37
+ def __init__(self, message):
38
+ self.message = message
39
+
40
+ def load(self):
41
+ # Crear una instancia de Document con el contenido y metadata adecuada
42
+ return Document(
43
+ page_content=self.message['content'],
44
+ metadata={
45
+ 'role': self.message['role'],
46
+ 'conversation_id': self.message['conversation_id'],
47
+ 'message_id': self.message['message_id']
48
+ }
49
+ )
50
+
51
+ # Cargar el archivo JSON
52
+ file_path = 'RAG_Datos.json' # Asegúrate de que esta ruta sea correcta
53
+
54
+ with open(file_path, 'r') as file:
55
+ data = json.load(file)
56
+
57
+ # Procesar los mensajes y crear los documentos
58
+ docs_list = []
59
+ for conversation in data:
60
+ for message in conversation['messages']:
61
+ docs_list.append(JSONLoader(message).load())
62
+
63
+ # Verificar el contenido (opcional)
64
+ for doc in docs_list:
65
+ print(doc.page_content, doc.metadata)
66
+
67
+ """from langchain_community.document_loaders import WebBaseLoader
68
+
69
+ urls = [
70
+ "https://lilianweng.github.io/posts/2023-06-23-agent/",
71
+ "https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
72
+ "https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
73
+ ]"""
74
+
75
+ """docs = [WebBaseLoader(url).load() for url in urls]""
76
+
77
+ """docs_list = [item for sublist in docs for item in sublist]
78
+
79
+ ## Splitting
80
+
81
+ Long context retrieval,
82
+ Chunck_size -> tamaño de cada texto
83
+ """
84
+
85
+ # Ahora puedes usar docs_list con text_splitter
86
+ from langchain.text_splitter import CharacterTextSplitter
87
+
88
+ text_splitter = CharacterTextSplitter(
89
+ chunk_size=7500, chunk_overlap=100
90
+ )
91
+ doc_splits = text_splitter.split_documents(docs_list)
92
+
93
+ # Verificar el contenido de los splits (opcional)
94
+ for split in doc_splits:
95
+ print(split.page_content, split.metadata)
96
+
97
+ import tiktoken
98
+
99
+ encoding = tiktoken.get_encoding("cl100k_base")
100
+ encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
101
+ for d in doc_splits:
102
+ print("The document is %s tokens" % len(encoding.encode(d.page_content)))
103
+
104
+ """## Index
105
+
106
+ Nomic embeddings [here](https://docs.nomic.ai/reference/endpoints/nomic-embed-text).
107
+ """
108
+
109
+ import os
110
+
111
+ from langchain_community.vectorstores import Chroma
112
+ from langchain_core.output_parsers import StrOutputParser
113
+ from langchain_core.runnables import RunnableLambda, RunnablePassthrough
114
+ from langchain_nomic import NomicEmbeddings
115
+ from langchain_nomic.embeddings import NomicEmbeddings
116
+
117
+ # Add to vectorDB
118
+ vectorstore = Chroma.from_documents(
119
+ documents=doc_splits,
120
+ collection_name="rag-chroma",
121
+ embedding=NomicEmbeddings(model="nomic-embed-text-v1"),
122
+ )
123
+ retriever = vectorstore.as_retriever()
124
+
125
+ """## RAG Chain
126
+
127
+ We can use the
128
+ """
129
+
130
+ import os
131
+ from sklearn.metrics import precision_score, recall_score, f1_score
132
+ from nltk.translate.bleu_score import corpus_bleu
133
+ from langchain_core.prompts import ChatPromptTemplate
134
+ from langchain_openai import ChatOpenAI
135
+ from langchain.chains import LLMChain
136
+
137
+ # Configurar la clave de API como variable de entorno
138
+ os.environ['OPENAI_API_KEY'] = 'sk-proj-OaIQbNSKP2uATHxcaUxhT3BlbkFJi2HSSi4zSHSOw9UjtUWn'
139
+
140
+ # Prompt
141
+ template = """Answer the question based only on the following context:
142
+ {context}
143
+
144
+ Question: {question}
145
+ """
146
+ prompt = ChatPromptTemplate.from_template(template)
147
+
148
+ # LLM API
149
+ model = ChatOpenAI(temperature=0, model="gpt-4-1106-preview")
150
+
151
+ # Placeholder para `retriever`
152
+ class DummyRetriever:
153
+ def __call__(self, *args, **kwargs):
154
+ return {"context": "This is a test context"}
155
+
156
+ retriever = DummyRetriever()
157
+
158
+ # Crear una cadena LLM
159
+ llm_chain = LLMChain(
160
+ prompt=prompt,
161
+ llm=model,
162
+ )
163
+
164
+ # Datos de prueba
165
+ test_data = [
166
+ {"context": "Write a Python function to sum all prime numbers up to 1000.", "question": "How to write a function to sum all prime numbers up to 1000?", "expected_answer": "def sum_primes(limit):\n def is_prime(n):\n if n <= 1:\n return False\n for i in range(2, int(n**0.5) + 1):\n if n % i == 0:\n return False\n return True\n return sum(x for x in range(limit) if is_prime(x))\n\nprint(sum_primes(1000))"},
167
+ {"context": "Write a Python function to calculate the factorial of a number.", "question": "How to write a function to calculate the factorial of a number?", "expected_answer": "def factorial(n):\n if n == 0:\n return 1\n else:\n return n * factorial(n-1)\n\nprint(factorial(5))"},
168
+ {"context": "Write a Python function to check if a number is palindrome.", "question": "How to write a function to check if a number is palindrome?", "expected_answer": "def is_palindrome(n):\n return str(n) == str(n)[::-1]\n\nprint(is_palindrome(121))"},
169
+ {"context": "Write a Python function to generate Fibonacci sequence up to n.", "question": "How to write a function to generate Fibonacci sequence up to n?", "expected_answer": "def fibonacci(n):\n fib_sequence = [0, 1]\n while len(fib_sequence) < n:\n fib_sequence.append(fib_sequence[-1] + fib_sequence[-2])\n return fib_sequence\n\nprint(fibonacci(10))"},
170
+ {"context": "Write a Python function to find the greatest common divisor (GCD) of two numbers.", "question": "How to write a function to find the greatest common divisor (GCD) of two numbers?", "expected_answer": "def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\nprint(gcd(48, 18))"},
171
+ {"context": "Write a Python function to check if a string is an anagram of another string.", "question": "How to write a function to check if a string is an anagram of another string?", "expected_answer": "def is_anagram(str1, str2):\n return sorted(str1) == sorted(str2)\n\nprint(is_anagram('listen', 'silent'))"},
172
+ {"context": "Write a Python function to find the maximum element in a list.", "question": "How to write a function to find the maximum element in a list?", "expected_answer": "def find_max(lst):\n return max(lst)\n\nprint(find_max([3, 5, 7, 2, 8]))"},
173
+ {"context": "Write a Python function to reverse a string.", "question": "How to write a function to reverse a string?", "expected_answer": "def reverse_string(s):\n return s[::-1]\n\nprint(reverse_string('hello'))"},
174
+ {"context": "Write a Python function to merge two sorted lists.", "question": "How to write a function to merge two sorted lists?", "expected_answer": "def merge_sorted_lists(lst1, lst2):\n return sorted(lst1 + lst2)\n\nprint(merge_sorted_lists([1, 3, 5], [2, 4, 6]))"},
175
+ {"context": "Write a Python function to remove duplicates from a list.", "question": "How to write a function to remove duplicates from a list?", "expected_answer": "def remove_duplicates(lst):\n return list(set(lst))\n\nprint(remove_duplicates([1, 2, 2, 3, 4, 4, 5]))"},
176
+ ]
177
+
178
+ # Evaluar la precisión, recall y F1-score de la recuperación
179
+ retrieved_contexts = [retriever()["context"] for _ in test_data]
180
+ expected_contexts = [item["context"] for item in test_data]
181
+ precision = precision_score(expected_contexts, retrieved_contexts, average='macro', zero_division=1)
182
+ recall = recall_score(expected_contexts, retrieved_contexts, average='macro', zero_division=1)
183
+ f1 = f1_score(expected_contexts, retrieved_contexts, average='macro')
184
+
185
+ print(f"Retrieval Precision: {precision}")
186
+ print(f"Retrieval Recall: {recall}")
187
+ print(f"Retrieval F1 Score: {f1}")
188
+
189
+ # Evaluar la generación de respuestas
190
+ generated_answers = []
191
+ for item in test_data:
192
+ output = llm_chain.run({"context": item["context"], "question": item["question"]})
193
+ generated_answers.append(output)
194
+
195
+ # BLEU Score
196
+ reference_answers = [[item["expected_answer"].split()] for item in test_data]
197
+ generated_answers_tokens = [answer.split() for answer in generated_answers]
198
+ bleu_score = corpus_bleu(reference_answers, generated_answers_tokens)
199
+
200
+ print(f"BLEU Score: {bleu_score}")
RAG_Datos.json ADDED
The diff for this file is too large to render. See raw diff