Upload 3 files
Browse files- LLAMA_DatosEntrenamiento.txt +0 -0
- LLAMA_DatosValidacion.txt +0 -0
- LLAMA_Fine-Tuning.py +234 -0
LLAMA_DatosEntrenamiento.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLAMA_DatosValidacion.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLAMA_Fine-Tuning.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""LLAMA_Fine-Tuning.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1C-kNPOgPiCC9ybxVKhOkWB9ts53APbOb
|
8 |
+
|
9 |
+
# Fine-tune Llama 2 in Google Colab
|
10 |
+
"""
|
11 |
+
|
12 |
+
!pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
|
13 |
+
|
14 |
+
!pip install datasets
|
15 |
+
|
16 |
+
!pip install --upgrade accelerate peft bitsandbytes transformers trl
|
17 |
+
|
18 |
+
import os
|
19 |
+
import torch
|
20 |
+
from datasets import load_dataset
|
21 |
+
from transformers import (
|
22 |
+
AutoModelForCausalLM,
|
23 |
+
AutoTokenizer,
|
24 |
+
BitsAndBytesConfig,
|
25 |
+
HfArgumentParser,
|
26 |
+
TrainingArguments,
|
27 |
+
pipeline,
|
28 |
+
logging,
|
29 |
+
)
|
30 |
+
from peft import LoraConfig, PeftModel
|
31 |
+
from trl import SFTTrainer
|
32 |
+
|
33 |
+
# The model that you want to train from the Hugging Face hub
|
34 |
+
model_name = "unsloth/llama-3-8b-bnb-4bit"
|
35 |
+
|
36 |
+
# The Hugging Face token
|
37 |
+
token_name = "XXXX"
|
38 |
+
|
39 |
+
|
40 |
+
# Fine-tuned model name
|
41 |
+
new_model = "llama-2-7b-minipython"
|
42 |
+
|
43 |
+
################################################################################
|
44 |
+
# QLoRA parameters
|
45 |
+
################################################################################
|
46 |
+
|
47 |
+
# LoRA attention dimension
|
48 |
+
lora_r = 64
|
49 |
+
|
50 |
+
# Alpha parameter for LoRA scaling
|
51 |
+
lora_alpha = 16
|
52 |
+
|
53 |
+
# Dropout probability for LoRA layers
|
54 |
+
lora_dropout = 0.1
|
55 |
+
|
56 |
+
################################################################################
|
57 |
+
# bitsandbytes parameters
|
58 |
+
################################################################################
|
59 |
+
|
60 |
+
# Activate 4-bit precision base model loading
|
61 |
+
use_4bit = True
|
62 |
+
|
63 |
+
# Compute dtype for 4-bit base models
|
64 |
+
bnb_4bit_compute_dtype = "float16"
|
65 |
+
|
66 |
+
# Quantization type (fp4 or nf4)
|
67 |
+
bnb_4bit_quant_type = "nf4"
|
68 |
+
|
69 |
+
# Activate nested quantization for 4-bit base models (double quantization)
|
70 |
+
use_nested_quant = False
|
71 |
+
|
72 |
+
################################################################################
|
73 |
+
# TrainingArguments parameters
|
74 |
+
################################################################################
|
75 |
+
|
76 |
+
# Output directory where the model predictions and checkpoints will be stored
|
77 |
+
output_dir = "./results"
|
78 |
+
|
79 |
+
# Number of training epochs
|
80 |
+
num_train_epochs = 1
|
81 |
+
|
82 |
+
# Enable fp16/bf16 training (set bf16 to True with an A100)
|
83 |
+
fp16 = False
|
84 |
+
bf16 = False
|
85 |
+
|
86 |
+
# Batch size per GPU for training
|
87 |
+
per_device_train_batch_size = 4
|
88 |
+
|
89 |
+
# Batch size per GPU for evaluation
|
90 |
+
per_device_eval_batch_size = 4
|
91 |
+
|
92 |
+
# Number of update steps to accumulate the gradients for
|
93 |
+
gradient_accumulation_steps = 1
|
94 |
+
|
95 |
+
# Enable gradient checkpointing
|
96 |
+
gradient_checkpointing = True
|
97 |
+
|
98 |
+
# Maximum gradient normal (gradient clipping)
|
99 |
+
max_grad_norm = 0.3
|
100 |
+
|
101 |
+
# Initial learning rate (AdamW optimizer)
|
102 |
+
learning_rate = 2e-4
|
103 |
+
|
104 |
+
# Weight decay to apply to all layers except bias/LayerNorm weights
|
105 |
+
weight_decay = 0.001
|
106 |
+
|
107 |
+
# Optimizer to use
|
108 |
+
optim = "paged_adamw_32bit"
|
109 |
+
|
110 |
+
# Learning rate schedule
|
111 |
+
lr_scheduler_type = "cosine"
|
112 |
+
|
113 |
+
# Number of training steps (overrides num_train_epochs)
|
114 |
+
max_steps = -1
|
115 |
+
|
116 |
+
# Ratio of steps for a linear warmup (from 0 to learning rate)
|
117 |
+
warmup_ratio = 0.03
|
118 |
+
|
119 |
+
# Group sequences into batches with same length
|
120 |
+
# Saves memory and speeds up training considerably
|
121 |
+
group_by_length = True
|
122 |
+
|
123 |
+
# Save checkpoint every X updates steps
|
124 |
+
save_steps = 0
|
125 |
+
|
126 |
+
# Log every X updates steps
|
127 |
+
logging_steps = 25
|
128 |
+
|
129 |
+
################################################################################
|
130 |
+
# SFT parameters
|
131 |
+
################################################################################
|
132 |
+
|
133 |
+
# Maximum sequence length to use
|
134 |
+
max_seq_length = None
|
135 |
+
|
136 |
+
# Pack multiple short examples in the same input sequence to increase efficiency
|
137 |
+
packing = False
|
138 |
+
|
139 |
+
# Load the entire model on the GPU 0
|
140 |
+
device_map = {"": 0}
|
141 |
+
|
142 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorWithPadding
|
143 |
+
from datasets import Dataset
|
144 |
+
|
145 |
+
def load_text_file(file_path):
|
146 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
147 |
+
return [line.strip() for line in f if line.strip()]
|
148 |
+
|
149 |
+
train_texts = load_text_file('LLAMA_DatosEntrenamiento.txt')
|
150 |
+
val_texts = load_text_file('LLAMA_DatosValidacion.txt')
|
151 |
+
|
152 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token_name)
|
153 |
+
|
154 |
+
def tokenize_and_encode(texts):
|
155 |
+
encodings = tokenizer(texts, truncation=True, padding="longest", max_length=512, return_tensors="pt")
|
156 |
+
encodings['labels'] = encodings['input_ids'].clone() # Duplicar input_ids para usar como labels
|
157 |
+
return encodings
|
158 |
+
|
159 |
+
train_encodings = tokenize_and_encode(train_texts)
|
160 |
+
val_encodings = tokenize_and_encode(val_texts)
|
161 |
+
|
162 |
+
train_dataset = Dataset.from_dict({key: val.numpy() for key, val in train_encodings.items()})
|
163 |
+
val_dataset = Dataset.from_dict({key: val.numpy() for key, val in val_encodings.items()})
|
164 |
+
|
165 |
+
training_arguments = TrainingArguments(
|
166 |
+
output_dir=output_dir,
|
167 |
+
evaluation_strategy="steps", # Evaluar basado en el número de pasos
|
168 |
+
eval_steps=500, # Evaluar cada 500 pasos
|
169 |
+
num_train_epochs=1,
|
170 |
+
per_device_train_batch_size=2,
|
171 |
+
logging_steps=logging_steps,
|
172 |
+
save_steps=1000, # Guardar el modelo cada 1000 pasos para reducir la frecuencia de escritura en disco
|
173 |
+
learning_rate=2e-4,
|
174 |
+
weight_decay=0.001,
|
175 |
+
lr_scheduler_type="cosine",
|
176 |
+
warmup_ratio=0.03,
|
177 |
+
report_to="tensorboard",
|
178 |
+
fp16=False # Desactivar la precisión mixta para simplificar el entrenamiento
|
179 |
+
)
|
180 |
+
|
181 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=token_name)
|
182 |
+
|
183 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
184 |
+
|
185 |
+
trainer = Trainer(
|
186 |
+
model=model,
|
187 |
+
args=training_arguments,
|
188 |
+
train_dataset=train_dataset,
|
189 |
+
eval_dataset=val_dataset,
|
190 |
+
data_collator=data_collator
|
191 |
+
)
|
192 |
+
|
193 |
+
trainer.train()
|
194 |
+
|
195 |
+
model.save_pretrained(new_model)
|
196 |
+
|
197 |
+
# Commented out IPython magic to ensure Python compatibility.
|
198 |
+
# %load_ext tensorboard
|
199 |
+
# %tensorboard --logdir results/runs
|
200 |
+
|
201 |
+
train_texts[2]
|
202 |
+
|
203 |
+
# Ignore warnings
|
204 |
+
logging.set_verbosity(logging.CRITICAL)
|
205 |
+
|
206 |
+
# Run text generation pipeline with our next model
|
207 |
+
prompt = "Como puedo encontrar trabajo de ingeniero?"
|
208 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
209 |
+
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
210 |
+
print(result[0]['generated_text'])
|
211 |
+
|
212 |
+
# Empty VRAM
|
213 |
+
del model
|
214 |
+
del pipe
|
215 |
+
del trainer
|
216 |
+
import gc
|
217 |
+
gc.collect()
|
218 |
+
gc.collect()
|
219 |
+
|
220 |
+
# Reload model in FP16 and merge it with LoRA weights
|
221 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
222 |
+
model_name,
|
223 |
+
low_cpu_mem_usage=True,
|
224 |
+
return_dict=True,
|
225 |
+
torch_dtype=torch.float16,
|
226 |
+
device_map=device_map,
|
227 |
+
)
|
228 |
+
model = PeftModel.from_pretrained(base_model, new_model)
|
229 |
+
model = model.merge_and_unload()
|
230 |
+
|
231 |
+
# Reload tokenizer to save it
|
232 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
233 |
+
tokenizer.pad_token = tokenizer.eos_token
|
234 |
+
tokenizer.padding_side = "right"
|