eibeel commited on
Commit
1c11029
·
verified ·
1 Parent(s): d13f4d7

Upload 3 files

Browse files
MIXTRAL_DatosEntrenamiento.txt ADDED
The diff for this file is too large to render. See raw diff
 
MIXTRAL_DatosValidacion.txt ADDED
The diff for this file is too large to render. See raw diff
 
MIXTRAL_Fine-Tuning.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """MIXTRAL_Mixtral-8x7B (QLoRA)
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1GFRi-ND2WTbqCfPuhLkXvB6D3LieCpjK
8
+
9
+ This notebook shows how to fine-tune Mixtral-8x7b on a sample of ultrachat with QLoRA.
10
+
11
+ It requires at least 32 GB of VRAM (at least 2*16 GB GPUs if you want to use consumer hardware). On Google Colab, you can use the A100.
12
+
13
+ First, we need all these dependencies:
14
+ """
15
+
16
+ !pip install -q bitsandbytes
17
+ !pip install -q transformers
18
+ !pip install -q peft
19
+ !pip install -q accelerate
20
+ !pip install -q datasets
21
+ !pip install -q trl
22
+ !pip install -q huggingface_hub
23
+ !pip install -q diffusers
24
+
25
+ import torch
26
+ from datasets import Dataset
27
+ from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training
28
+ from transformers import (
29
+ AutoModelForCausalLM,
30
+ AutoTokenizer,
31
+ BitsAndBytesConfig,
32
+ TrainingArguments,
33
+ Trainer
34
+ )
35
+ from trl import SFTTrainer
36
+
37
+ """Load the tokenizer and configure padding"""
38
+
39
+ import os
40
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
41
+ from peft import PeftModel, prepare_model_for_kbit_training, LoraConfig
42
+
43
+ # Assuming you have the correct token set as an environment variable or directly in your script
44
+ os.environ['HF_TOKEN'] = 'XXXX'
45
+
46
+ # Name of the model you want to load
47
+ model_id = "mistralai/Mistral-7B-Instruct-v0.1"
48
+
49
+ try:
50
+ # Attempt to load the tokenizer
51
+ tokenizer = AutoTokenizer.from_pretrained(model_id, force_download=True)
52
+ tokenizer.pad_token = tokenizer.unk_token
53
+ tokenizer.pad_token_id = tokenizer.unk_token_id
54
+ tokenizer.padding_side = 'right'
55
+ print("Tokenizer loaded successfully.")
56
+
57
+ # Attempt to load the model
58
+ model = AutoModelForCausalLM.from_pretrained(model_id, force_download=True)
59
+ print("Model loaded successfully.")
60
+ except Exception as e:
61
+ print(f"Error loading the tokenizer or model: {e}")
62
+
63
+ """Load and preprocess the version of ultrachat prepared by Hugging Face.
64
+ Since each row is a full dialog that can be very long, I only kept the first two turns to reduce the sequence length of the training examples.
65
+ """
66
+
67
+ # Carga de datos
68
+ def load_custom_dataset(file_path):
69
+ with open(file_path, "r", encoding="utf-8") as file:
70
+ lines = file.readlines()
71
+ texts = [line.strip() for line in lines if line.strip()]
72
+ return Dataset.from_dict({"text": texts})
73
+
74
+ # Actualiza las rutas a los archivos correctos
75
+ dataset_train_sft = load_custom_dataset("MIXTRAL_DatosEntrenamiento.txt")
76
+ dataset_test_sft = load_custom_dataset("MIXTRAL_DatosValidacion.txt")
77
+
78
+ """Load the model and prepare it to be fine-tuned with QLoRA."""
79
+
80
+ compute_dtype = getattr(torch, "float16")
81
+ bnb_config = BitsAndBytesConfig(
82
+ load_in_4bit=True,
83
+ bnb_4bit_quant_type="nf4",
84
+ bnb_4bit_compute_dtype=compute_dtype,
85
+ bnb_4bit_use_double_quant=True,
86
+ )
87
+ model = AutoModelForCausalLM.from_pretrained(
88
+ model_id, quantization_config=bnb_config, device_map={"": 0}
89
+ )
90
+ model = prepare_model_for_kbit_training(model)
91
+ model.config.pad_token_id = tokenizer.pad_token_id
92
+ model.config.use_cache = False # Gradient checkpointing is used by default but not compatible with caching
93
+
94
+ """The following cell only prints the architecture of the model."""
95
+
96
+ print(model)
97
+
98
+ """Define the configuration of LoRA."""
99
+
100
+ peft_config = LoraConfig(
101
+ lora_alpha=16,
102
+ lora_dropout=0.1,
103
+ r=64,
104
+ )
105
+
106
+ """For this demonstration, I trained for only 300 steps. You should train for at least 3000 steps. One epoch would be ideal.
107
+
108
+ from sklearn.metrics import accuracy_score, f1_score
109
+
110
+ def compute_metrics(eval_pred):
111
+ logits, labels = eval_pred
112
+ predictions = np.argmax(logits, axis=-1)
113
+ return {
114
+ "accuracy": accuracy_score(labels, predictions),
115
+ "f1": f1_score(labels, predictions, average='macro')
116
+ }
117
+ """
118
+
119
+ training_arguments = TrainingArguments(
120
+ output_dir="./results_mixtral_sft/",
121
+ evaluation_strategy="steps",
122
+ do_eval=True,
123
+ optim="paged_adamw_8bit",
124
+ num_train_epochs=1,
125
+ per_device_train_batch_size=4,
126
+ gradient_accumulation_steps=2,
127
+ per_device_eval_batch_size=4,
128
+ log_level="debug",
129
+ save_steps=1000,
130
+ logging_steps=100,
131
+ learning_rate=2e-4,
132
+ eval_steps=500,
133
+ max_steps=-1,
134
+ lr_scheduler_type="linear",
135
+ report_to="tensorboard" # Ensure TensorBoard is enabled
136
+ )
137
+
138
+ """Start training:"""
139
+
140
+ trainer = SFTTrainer(
141
+ model=model,
142
+ train_dataset=dataset_train_sft,
143
+ eval_dataset=dataset_test_sft,
144
+ peft_config=peft_config,
145
+ dataset_text_field="text",
146
+ max_seq_length=512,
147
+ tokenizer=tokenizer,
148
+ args=training_arguments,
149
+ )
150
+
151
+ trainer.train()
152
+
153
+ # Commented out IPython magic to ensure Python compatibility.
154
+ # Activar TensorBoard para visualizar gráficos
155
+ # %load_ext tensorboard
156
+ # %tensorboard --logdir results_mixtral_sft/runs