ekolasky's picture
Update handler.py
4983fe7
raw
history blame
5.26 kB
from typing import Dict, List, Any
from transformers import AutoModel, AutoTokenizer
import torch
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.model = AutoModel.from_pretrained(path, trust_remote_code=True)
self.model.eval()
self.tokenizer = AutoTokenizer.from_pretrained('allenai/led-base-16384')
# create inference pipeline
#self.pipeline = pipeline("token-classification", model=model, tokenizer=tokenizer)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
text = data['inputs'].pop("text", "")
label_tolerance = data['inputs'].pop("label_tolerance", 0)
backup_tolerance = data['inputs'].pop("backup_tolerance", None)
# Return labeled results and backup results based on tolerances
inputs = self.preprocess_text(text)
outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
# Extract labeled results
predictions = self.extract_results(input_ids=inputs['input_ids'][0].tolist(), offset_mapping=inputs['offset_mapping'], logits=outputs['logits'],
label_tolerance=label_tolerance, backup_tolerance=backup_tolerance)
return predictions
def preprocess_text(self, text):
inputs = self.tokenizer(text, return_offsets_mapping=True)
input_ids = torch.tensor([inputs["input_ids"]])#, dtype=torch.fp32)
attention_mask = torch.tensor([inputs["attention_mask"]])#, dtype=torch.fp32)
return {"input_ids": input_ids, "attention_mask": attention_mask, "offset_mapping": inputs["offset_mapping"]}
def extract_results(self, input_ids, offset_mapping, logits, label_tolerance=0, backup_tolerance=None):
def convert_indices_to_result_obj(indices_array):
result_array = []
if (indices_array):
for result_indices in indices_array:
text = self.tokenizer.decode(input_ids[result_indices[0]:result_indices[-1]]).strip()
indices = [offset_mapping[result_indices[0]][0], offset_mapping[result_indices[-1]][0]]
if text != " " and text != "":
result_array.append({'text': text, 'indices': indices})
return result_array
# Extract labeled results first
labeled_result_indices = []
result_indices = []
for index, token_logits in enumerate(logits.tolist()[0]):
if (len(result_indices) > 0):
if token_logits[2] > label_tolerance:
result_indices.append(index)
else:
labeled_result_indices.append(result_indices)
result_indices = []
elif (token_logits[1] > label_tolerance):
result_indices.append(index)
if (len(result_indices) > 0):
labeled_result_indices.append(result_indices)
# Extract backup results, avoiding overlapping with labeled results
backup_result_indices = []
result_indices = []
if (backup_tolerance):
for index, token_logits in enumerate(logits.tolist()[0]):
if (len(result_indices) > 0):
if token_logits[2] > backup_tolerance:
result_indices.append(index)
else:
# Check if backup result overlaps at all with any labeled result. If it does just ignore it
overlaps_labeled_result = False
if (len(labeled_result_indices) > 0):
for index in result_indices:
for group in labeled_result_indices:
for labeled_index in group:
if (index == labeled_index):
overlaps_labeled_result = True
if (not overlaps_labeled_result):
backup_result_indices.append(result_indices)
result_indices = []
elif (token_logits[1] > backup_tolerance):
result_indices.append(index)
# Convert both labeled results and backup results to {name: "", indices: []}
labeled_results = convert_indices_to_result_obj(labeled_result_indices)
backup_results = convert_indices_to_result_obj(backup_result_indices)
return {'labeled_results': labeled_results, 'backup_results': backup_results}