from typing import Dict, List, Any from transformers import AutoModel, AutoTokenizer import torch class EndpointHandler(): def __init__(self, path=""): # load the optimized model self.model = AutoModel.from_pretrained(path, trust_remote_code=True) self.model.eval() self.tokenizer = AutoTokenizer.from_pretrained('allenai/led-base-16384') # create inference pipeline #self.pipeline = pipeline("token-classification", model=model, tokenizer=tokenizer) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ text = data['inputs'].pop("text", "") label_tolerance = data['inputs'].pop("label_tolerance", 0) backup_tolerance = data['inputs'].pop("backup_tolerance", None) # Return labeled results and backup results based on tolerances inputs = self.preprocess_text(text) outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']) # Extract labeled results predictions = self.extract_results(input_ids=inputs['input_ids'][0].tolist(), offset_mapping=inputs['offset_mapping'], logits=outputs['logits'], label_tolerance=label_tolerance, backup_tolerance=backup_tolerance) return predictions def preprocess_text(self, text): inputs = self.tokenizer(text, return_offsets_mapping=True) input_ids = torch.tensor([inputs["input_ids"]])#, dtype=torch.fp32) attention_mask = torch.tensor([inputs["attention_mask"]])#, dtype=torch.fp32) return {"input_ids": input_ids, "attention_mask": attention_mask, "offset_mapping": inputs["offset_mapping"]} def extract_results(self, input_ids, offset_mapping, logits, label_tolerance=0, backup_tolerance=None): def convert_indices_to_result_obj(indices_array): result_array = [] if (indices_array): for result_indices in indices_array: text = self.tokenizer.decode(input_ids[result_indices[0]:result_indices[-1]]) indices = [offset_mapping[result_indices[0]][0], offset_mapping[result_indices[-1]][1]] while True: if text[0] == " ": text = text[1:] indices[0] += 1 else: break if text != " " and text != "": result_array.append({'text': text, 'indices': indices}) return result_array # Extract labeled results first labeled_result_indices = [] result_indices = [] for index, token_logits in enumerate(logits.tolist()[0]): if (len(result_indices) > 0): if token_logits[2] > label_tolerance: result_indices.append(index) else: labeled_result_indices.append(result_indices) result_indices = [] elif (token_logits[1] > label_tolerance): result_indices.append(index) if (len(result_indices) > 0): labeled_result_indices.append(result_indices) # Extract backup results, avoiding overlapping with labeled results backup_result_indices = [] result_indices = [] if (backup_tolerance): for index, token_logits in enumerate(logits.tolist()[0]): if (len(result_indices) > 0): if token_logits[2] > backup_tolerance: result_indices.append(index) else: # Check if backup result overlaps at all with any labeled result. If it does just ignore it overlaps_labeled_result = False if (len(labeled_result_indices) > 0): for index in result_indices: for group in labeled_result_indices: for labeled_index in group: if (index == labeled_index): overlaps_labeled_result = True if (not overlaps_labeled_result): backup_result_indices.append(result_indices) result_indices = [] elif (token_logits[1] > backup_tolerance): result_indices.append(index) # Convert both labeled results and backup results to {name: "", indices: []} labeled_results = convert_indices_to_result_obj(labeled_result_indices) backup_results = convert_indices_to_result_obj(backup_result_indices) return {'labeled_results': labeled_results, 'backup_results': backup_results}