--- language: - ha license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Seon25/common_voice_16_0_ metrics: - wer model-index: - name: Whisper Small Ha adam_w v4 - Eldad Akhaumere results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: Seon25/common_voice_16_0_ config: ha split: None args: 'config: ha, split: test' metrics: - name: Wer type: wer value: 78.86568308105001 --- # Whisper Small Ha adam_w v4 - Eldad Akhaumere This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 2.2150 - Wer Ortho: 81.0547 - Wer: 78.8657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| | 0.0995 | 3.1847 | 500 | 1.7910 | 90.4297 | 88.1778 | | 0.0468 | 6.3694 | 1000 | 1.9594 | 82.8320 | 81.1458 | | 0.0394 | 9.5541 | 1500 | 2.0776 | 89.8438 | 87.7563 | | 0.0314 | 12.7389 | 2000 | 2.2150 | 81.0547 | 78.8657 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1