File size: 13,746 Bytes
bc02bea |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d3d5b9c97e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d3d5b9c9870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d3d5b9c9900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d3d5b9c9990>", "_build": "<function ActorCriticPolicy._build at 0x7d3d5b9c9a20>", "forward": "<function ActorCriticPolicy.forward at 0x7d3d5b9c9ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d3d5b9c9b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d3d5b9c9bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d3d5b9c9c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d3d5b9c9cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d3d5b9c9d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d3d5b9c9e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3d5b9d9040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695006895991341007, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZhhzzREBo+PaUxvpByI76Xn2+9AT8ovQAAAAAAAAAAcHyHPsr8Lj+D+MQ7dQTWvpDNZT4JsBC+AAAAAAAAAACmnLy94Rr9uGIQyzvNCyQ5kMShuqo1JTgAAAAAAACAP8BB/j2Q1rs/sNX1PrdrTr5W3qc9KDxPPgAAAAAAAAAAEEFhvmmMJT8X0cQ9hVuUvhx/s7wAKsK8AAAAAAAAAADGtCK+rHOsPmIyZT7DlYm+VBfvPEwcnbsAAAAAAAAAAM1t97yUQLa86vA7PR4S1r0Siii+0syovgAAgD8AAIA/jb0/vogPjLybGlu73A61ufjo/T2ZJpE6AACAPwAAgD/wp86+ZB0UPzkjyz1pSLu+Q0tBvt4zsD0AAAAAAAAAAM0fpz33e4g/GH9IPidT5r5kPe894tEEPQAAAAAAAAAAzemmvY8ecLq/AZkzZuvVL5kkkTmaSr6zAACAPwAAgD9AU6U9e1KKuujwYrvxOe839oaGuhV7GDoAAIA/AAAAAPNx171XWiU8eCStPTMC7L0EF1o81dBsvAAAAAAAAAAAZmXCvbxnIj0WJlc8VHQyvqFjsrwF9gU9AAAAAAAAAACaaii9msoJPpYKTrzJize+qZOUvIicRzwAAAAAAAAAADpiC75xRie7XllfvFeBj7luajQ8OEe7OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGxB+lj3EhuMAWyUTU8BjAF0lEdAkSyIVh1DB3V9lChoBkdAcCf078vVVmgHTVQBaAhHQJE+N6Ww/xF1fZQoaAZHQG2HHzg/C69oB00mAWgIR0CRPqKQq7ROdX2UKGgGR0BwNDAZbY9QaAdNPgFoCEdAkT80Gu9vj3V9lChoBkdAcILd7fHgg2gHTSoCaAhHQJE/d3aBZp11fZQoaAZHQHNqnBpHqeNoB00hA2gIR0CRQGIO6NEPdX2UKGgGR0BwnP8ejmCAaAdNLwFoCEdAkUCHMt9QXXV9lChoBkdAboLxEORT0mgHTX0BaAhHQJFBNNL127p1fZQoaAZHQHDigHeJpFloB0v9aAhHQJFBgvlEJBx1fZQoaAZHQHArPitJWeZoB00rAWgIR0CRQZNHH3lCdX2UKGgGR0Byxe2v0RODaAdNRAFoCEdAkUHZh8Yyf3V9lChoBkdAcF90se4kNWgHTRkBaAhHQJFC9eu3c591fZQoaAZHQHE2FaW5Yo1oB00IAWgIR0CRRyF7D2rXdX2UKGgGR0BxDXZVXFLnaAdNSQFoCEdAkUc12NedCnV9lChoBkdAbaWya/h2n2gHTQkBaAhHQJFHoTSLIgh1fZQoaAZHQEgewA2hqTNoB00AAWgIR0CRSESqEOAidX2UKGgGR0BsacMI/qxDaAdN+QFoCEdAkUjqk/KQrHV9lChoBkdAbn1wNLDhtWgHTRoBaAhHQJFJCmDUVi51fZQoaAZHQG8KqvvBrN5oB01iAWgIR0CRSajHn2ZidX2UKGgGR0BuPUqBmPHUaAdNLAFoCEdAkUsumFaje3V9lChoBkdAcP1/tIClrWgHTTABaAhHQJFLhdY4hll1fZQoaAZHQG7WdQoCuEFoB02YAWgIR0CRS4dGRV6vdX2UKGgGR0Bu7zrLQokSaAdN3AFoCEdAkUwqz3RG+nV9lChoBkdAcWlXMyJsPGgHTTwBaAhHQJFNFLdvbXZ1fZQoaAZHQG/Xq814xDdoB01UAWgIR0CRTrBqsU7CdX2UKGgGR0BraL2criEQaAdNbAFoCEdAkVBdahYeT3V9lChoBkdAcQUZKWcBl2gHTWcBaAhHQJFR/uCwr2B1fZQoaAZHQHGOH2ugYgtoB028AWgIR0CRU71EVnEmdX2UKGgGR0BwvOYRdyDJaAdNHAFoCEdAkVSUi+tbLXV9lChoBkdAcTPM8ox59mgHTQwBaAhHQJFVRfVqesh1fZQoaAZHQG83oZhrnDBoB00YAWgIR0CRVfvjwQUYdX2UKGgGR0BszpwAEMb4aAdNSwFoCEdAkVZVBD5TInV9lChoBkdAbTL8b70nPWgHTWEBaAhHQJFXPmFJxvN1fZQoaAZHQHCYSRGMGX5oB0v/aAhHQJFXs+RoysV1fZQoaAZHQHFhXr+o99toB01TAWgIR0CRV8t+TeO5dX2UKGgGR0BxlAJrtVrAaAdNEAFoCEdAkVhjSThYNnV9lChoBkdAcRqDc/MW42gHTSsBaAhHQJFaGee4Cp51fZQoaAZHQHLmhFZxJd1oB01qAWgIR0CRWjdz4k/sdX2UKGgGR0BuZLhUBGQTaAdNSgFoCEdAkVx1C1JDmnV9lChoBkdAQqkzyjHn2mgHS8RoCEdAkV1UWl/H53V9lChoBkdAcFjkUbkwOGgHTYcBaAhHQJFdU7tAs051fZQoaAZHQG+wKAz544ZoB01UAWgIR0CRXhrPMSsbdX2UKGgGR0BzPtkbxVhkaAdNZgFoCEdAkV/OsDGLk3V9lChoBkdAb9Ll8w5/9mgHTSgBaAhHQJFf/RTjvNN1fZQoaAZHQHEpat1ZDAtoB01mAWgIR0CRYONBF/hEdX2UKGgGR0BvP1abF0gbaAdNGgFoCEdAkWEBISUTtnV9lChoBkdAcWlyn1nM+2gHTRMBaAhHQJFier6tT1l1fZQoaAZHQFAnqJ/G2kVoB0v3aAhHQJFi+iL2pQ11fZQoaAZHQHJsCCrcTJ1oB001AWgIR0CRYx6+FlCkdX2UKGgGR0By2EvGp++eaAdNQgFoCEdAkWN2vwEyL3V9lChoBkdAbqPYs/Y8MmgHTVMBaAhHQJFjp3jdYXB1fZQoaAZHQHCGy0WuX/poB01nAWgIR0CRY6CiRGMGdX2UKGgGR0ByfHjR2KVIaAdNIQFoCEdAkXYI3WFvh3V9lChoBkdAcDcjLSuyNWgHTUkBaAhHQJF4KTwDvE11fZQoaAZHQHCofovBacJoB00xAWgIR0CReDU3GXHBdX2UKGgGR0Bvuo3Ns3yaaAdNDgFoCEdAkXj7y1/lQ3V9lChoBkdAcE3fAbhm5GgHTQ0BaAhHQJF6Fd9lVcV1fZQoaAZHQHGvAsTWXkZoB01dAWgIR0CRe62TgVGkdX2UKGgGR7/yFEqlP8AJaAdL72gIR0CRfCvA44p+dX2UKGgGR0ByMuo4uK4yaAdNtwFoCEdAkXwmVZ9uxnV9lChoBkdAcWMJvHcUNGgHTSEBaAhHQJF8psabWmR1fZQoaAZHQG/eyHmA9V5oB008AWgIR0CRfhmhdt2tdX2UKGgGR0BxDqLtNSIhaAdNOgFoCEdAkX4vuG9HtnV9lChoBkdAcp8aOxSpBGgHTTEBaAhHQJF+QWepXIV1fZQoaAZHQHEBbMLWqcVoB004AWgIR0CRfp5BkZrIdX2UKGgGR0BvZhu0kWykaAdNmgFoCEdAkX7p5JK8MHV9lChoBkdAcunznA6+4GgHTQcBaAhHQJF/Ji1Aqut1fZQoaAZHQE8+mv4dp7FoB0veaAhHQJGAZeD3/Px1fZQoaAZHQHAPkZm7J4loB00CAWgIR0CRgMgGr0aqdX2UKGgGR0BIBsAeaKDTaAdL12gIR0CRgtuuieundX2UKGgGR0BxS+YrrgO0aAdNUQFoCEdAkYNDH0btJHV9lChoBkdAbnAjUutfX2gHTTABaAhHQJGEAdtEXtV1fZQoaAZHQHH1qhUR3/xoB0v7aAhHQJGEEo5PuXx1fZQoaAZHQG9MBXjlxOtoB00eAWgIR0CRhNALApKBdX2UKGgGR0BO4WWY4Qz2aAdL4mgIR0CRhTHSF49pdX2UKGgGR0BCi23rleWwaAdL42gIR0CRhebTMJQddX2UKGgGR0BuB5eZ5Rj0aAdNOwFoCEdAkYdHtShrWXV9lChoBkdAcGgTXrdFfGgHTR4BaAhHQJGJsv114gR1fZQoaAZHQGIqLoW56MRoB03oA2gIR0CRicRGtp22dX2UKGgGR0BvxP6KtPpIaAdNXgFoCEdAkYsgrpaA4HV9lChoBkdAcFlBnBciW2gHTQcBaAhHQJGLf2mHgxd1fZQoaAZHQG3czT4L1EpoB01rAWgIR0CRjBCnP3SKdX2UKGgGR0Bu1HvDxb0OaAdNYQFoCEdAkYyszl90BHV9lChoBkdAXZplBhQWN2gHTegDaAhHQJGPRoAXEZR1fZQoaAZHQHFZ11Oj7ANoB00IAWgIR0CRkHI1+AmRdX2UKGgGR0BueFbqyGBXaAdNLgFoCEdAkZFHDWK/EnV9lChoBkdAcA14iHIp6WgHTU4BaAhHQJGSTZZjhDR1fZQoaAZHQHIoVx0dRzloB00VAWgIR0CRk7WznieedX2UKGgGR0BwZPNbC79RaAdNPwFoCEdAkZSQaJhvznV9lChoBkdAcES6bvw3HmgHTTkBaAhHQJGUyGrS3LF1fZQoaAZHQHF+Jp8F6iVoB00MAWgIR0CRlMkXUH6edX2UKGgGR0BxsIF+uvECaAdL92gIR0CRlhL9uP3jdX2UKGgGR0BxHYdT5wfhaAdNnQFoCEdAkZeMXm/34HV9lChoBkdAb40XXRPXTWgHTQ0BaAhHQJGYG4d6syV1fZQoaAZHQHFx0VrRBu5oB00VAWgIR0CRmCgflp49dX2UKGgGR0BySjNLUTcqaAdNRwFoCEdAkZjjq4YrKHV9lChoBkdAcsTY6XBxgmgHTS4BaAhHQJGZefjCHh11fZQoaAZHQHH05Q+EAYJoB01PAWgIR0CRmvFLnLaFdX2UKGgGR0BvdJBJI1+BaAdNOwFoCEdAkZwgBkqc3HV9lChoBkdAcAbkt29tdmgHTS4BaAhHQJGcfIaLn9x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |