File size: 1,952 Bytes
8b40111
e6a9702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8de29a
 
 
e6a9702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: MALWARE-URL-DETECT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MALWARE-URL-DETECT
With this model, it detects harmful links created to harm people such as phishing in Turkey. Classifies url addresses as malware and benign.
Type the domain name of the url address in the text field for classification in API: Like this: 
"huggingface.com"  

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2122
- Accuracy: 0.945
- Precision: 0.9611
- Recall: 0.9287
- F1: 0.9446

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 1.0   | 63   | 0.2153          | 0.921    | 0.9953    | 0.8475 | 0.9155 |
| No log        | 2.0   | 126  | 0.1927          | 0.946    | 0.9669    | 0.9248 | 0.9453 |
| No log        | 3.0   | 189  | 0.2122          | 0.945    | 0.9611    | 0.9287 | 0.9446 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3