--- tags: - autotrain - text-classification widget: - text: >- Women and men both are making less when you adjust for inflation than when John Kitzhaber was first elected governor. --- #This model is designed to identify and classify text into number of categories: It leverages advanced Natural Language Processing (NLP) techniques, specifically sentiment analysis, to determine the overall attitude or opinion expressed within a piece of text. By combining this with a dedicated dataset focusing on identifying lies and fakes, it aims to accurately predict whether a given statement is true or false. ```JSON [ [ { "label": "half-true", "score": 0.21052952110767365 }, { "label": "mostly-true", "score": 0.19538265466690063 }, { "label": "false", "score": 0.1879868507385254 }, { "label": "barely-true", "score": 0.16795198619365692 }, { "label": "true", "score": 0.1583855301141739 }, { "label": "pants-fire", "score": 0.0797634944319725 } ] ] ``` # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 1.757171869277954 f1_macro: 0.05706191825171995 f1_micro: 0.20654296875 f1_weighted: 0.07071442798968029 precision_macro: 0.034423828125 precision_micro: 0.20654296875 precision_weighted: 0.04265999794006348 recall_macro: 0.16666666666666666 recall_micro: 0.20654296875 recall_weighted: 0.20654296875 accuracy: 0.20654296875