eliotz commited on
Commit
3c1611f
1 Parent(s): 28b8c81

first push

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 214.38 +/- 19.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb337e84040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb337e840d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb337e84160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb337e841f0>", "_build": "<function ActorCriticPolicy._build at 0x7fb337e84280>", "forward": "<function ActorCriticPolicy.forward at 0x7fb337e84310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb337e843a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb337e84430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb337e844c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb337e84550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb337e845e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb337e804b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673126808791139628, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Y0zu4RvO5lSjfOURMxjSNWZY67I4DuQAAgD8AAIA/OmdgPo1U4D7CxIE9AeKDvtOK9D1xhJg8AAAAAAAAAACAudm9GId8P7KXXL1P64S+Sv3uvF+TpzsAAAAAAAAAANo6qz6x0ec+6PuXvLpxLL6iy/A8togPPQAAAAAAAAAAzdH+vFJwyrlj8pi6xLyBtPmO4rsTk7Y5AACAPwAAgD8A5iG9e66jupZo37sT27I5j8nfOhokYDoAAIA/AACAPw1x4r0SX5U8ZYF1PR5TEL6rNeq7UFeTugAAAAAAAAAATf8Svbu8WT/Yo1A9gmZ4vtO1rTxZ7qM9AAAAAAAAAAAmnqq99lABuq336re6cpKy2Lmgu6w/DDcAAIA/AACAP6ao4j2PFl26jVkROi9IRzUdol47YWUpuQAAgD8AAIA/GnICPRRAsrobz/45FRcANVnC5LmWrBG5AACAPwAAgD9m9Fg+4SK8vLBZc7sDGdE5BhopvmZXnDoAAIA/AACAP2Y9aD4SANk8kECaPM2BjL19z8Q890eavQAAAAAAAAAAgFgXPa4FmbpOC4O4/GJ2s3vl6jm7aJc3AACAPwAAgD9Nr+o9H73NuREPtLqUBqG2xPu5ut8VhLgAAIA/AACAP0vIrL64ptA+9gewPTzcF75SAko9+7sHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx/SEJR5YWkCUhpRSlIwBbJRN6AOMAXSUR0CQgKxlxwQ2dX2UKGgGaAloD0MIz6J3KuBoYUCUhpRSlGgVTegDaBZHQJCCjG6wt8N1fZQoaAZoCWgPQwhkQPZ695RdQJSGlFKUaBVN6ANoFkdAkIkfci4axXV9lChoBmgJaA9DCAZGXtbEs1tAlIaUUpRoFU3oA2gWR0CQi7LqlgtwdX2UKGgGaAloD0MIQrPr3go+YECUhpRSlGgVTegDaBZHQJCMqL3sXzl1fZQoaAZoCWgPQwjPhvwzg2A/wJSGlFKUaBVNAgFoFkdAkJCcfvF3p3V9lChoBmgJaA9DCBQ98DHYf2RAlIaUUpRoFU3oA2gWR0CQmIU83dbgdX2UKGgGaAloD0MIpMLYQpA5WUCUhpRSlGgVTegDaBZHQJCa/29L6DZ1fZQoaAZoCWgPQwjYRjzZTRdjQJSGlFKUaBVN6ANoFkdAkLKrGNrCWXV9lChoBmgJaA9DCLjqOlTToWJAlIaUUpRoFU3oA2gWR0CQu8z19ORDdX2UKGgGaAloD0MI9l0R/G9FXkCUhpRSlGgVTegDaBZHQJDAOuSwGGF1fZQoaAZoCWgPQwhdbcX+MilhQJSGlFKUaBVN6ANoFkdAkMI+qrBCU3V9lChoBmgJaA9DCPj+Bu3V1VlAlIaUUpRoFU3oA2gWR0CQxBgsK9f1dX2UKGgGaAloD0MIEANd+wI7YECUhpRSlGgVTegDaBZHQJDFErAgxJx1fZQoaAZoCWgPQwjB5hw8E+45wJSGlFKUaBVNMwFoFkdAkNVo3BHkLnV9lChoBmgJaA9DCGZPApvzDWFAlIaUUpRoFU3oA2gWR0CQ11AqNIbwdX2UKGgGaAloD0MIgjl6/N66YkCUhpRSlGgVTegDaBZHQJDZ5DArQPZ1fZQoaAZoCWgPQwgTmbnA5chgQJSGlFKUaBVN6ANoFkdAkNrGNWEK3XV9lChoBmgJaA9DCPYINUOqB1lAlIaUUpRoFU3oA2gWR0CQ3Rb8m8dxdX2UKGgGaAloD0MIeekmMQh0XUCUhpRSlGgVTegDaBZHQJDkestCiRJ1fZQoaAZoCWgPQwh8Kqc9JaFcQJSGlFKUaBVN6ANoFkdAkOdoYFaB7XV9lChoBmgJaA9DCEpE+BdBC2FAlIaUUpRoFU3oA2gWR0CQ6HX9R77bdX2UKGgGaAloD0MIWriswmaFX0CUhpRSlGgVTegDaBZHQJDstaxHG0h1fZQoaAZoCWgPQwgoYDsYMTdsQJSGlFKUaBVNjwFoFkdAkPMKgAZKnXV9lChoBmgJaA9DCL+CNGPRx1lAlIaUUpRoFU3oA2gWR0CQ9NvgWJrMdX2UKGgGaAloD0MIZ2K6EKv2bUCUhpRSlGgVTdMBaBZHQJD2CsOoYN11fZQoaAZoCWgPQwhUyJV6FoRWQJSGlFKUaBVN6ANoFkdAkPc/cBU70XV9lChoBmgJaA9DCINOCB10pWFAlIaUUpRoFU3oA2gWR0CRDrKZUkv9dX2UKGgGaAloD0MINKFJYkn5FECUhpRSlGgVTQwBaBZHQJERQE4ecQR1fZQoaAZoCWgPQwiT5Lm+D/tUQJSGlFKUaBVN6ANoFkdAkRSoixFAmnV9lChoBmgJaA9DCIiE7/0NFWlAlIaUUpRoFU2fAWgWR0CRFocQAdXDdX2UKGgGaAloD0MIYcWp1sKFV0CUhpRSlGgVTegDaBZHQJEYpuHerMl1fZQoaAZoCWgPQwhh/gqZKycwQJSGlFKUaBVNNgFoFkdAkRm8Vk+X7nV9lChoBmgJaA9DCC9pjNZR2l1AlIaUUpRoFU3oA2gWR0CRGkOZssQNdX2UKGgGaAloD0MIJcy0/SvcUkCUhpRSlGgVTegDaBZHQJEbHBvaURp1fZQoaAZoCWgPQwi/RSdLrecmQJSGlFKUaBVNWAFoFkdAkSXeW4Vh1HV9lChoBmgJaA9DCIy+gjRjnWNAlIaUUpRoFU3oA2gWR0CRLgM/QjUvdX2UKGgGaAloD0MIDeIDO/4/X0CUhpRSlGgVTegDaBZHQJEu2ULUkOZ1fZQoaAZoCWgPQwh4COOnceVaQJSGlFKUaBVN6ANoFkdAkTD3vc8DCHV9lChoBmgJaA9DCGmM1lHVulhAlIaUUpRoFU3oA2gWR0CROF+evpyIdX2UKGgGaAloD0MI+RQA4xkwYkCUhpRSlGgVTegDaBZHQJE7PxJ/XoV1fZQoaAZoCWgPQwhccXFUbkI5wJSGlFKUaBVL8WgWR0CRQZtxMnJDdX2UKGgGaAloD0MI2nQEcDNEYkCUhpRSlGgVTegDaBZHQJFJkPPLPld1fZQoaAZoCWgPQwj6tIr+0JxeQJSGlFKUaBVN6ANoFkdAkUrrcKw6hnV9lChoBmgJaA9DCM1y2eicl2RAlIaUUpRoFU3oA2gWR0CRTFRdhRZVdX2UKGgGaAloD0MIvFruzATzWkCUhpRSlGgVTegDaBZHQJFRr1WbPQh1fZQoaAZoCWgPQwhg5GVNLHJgQJSGlFKUaBVN6ANoFkdAkWq/+fh/AnV9lChoBmgJaA9DCI9SCU/og1xAlIaUUpRoFU3oA2gWR0CRbOfgaWHDdX2UKGgGaAloD0MIDK1OztDZYUCUhpRSlGgVTegDaBZHQJFvOKxcE/11fZQoaAZoCWgPQwiZoIZv4W5jQJSGlFKUaBVN6ANoFkdAkXB9MfzSTnV9lChoBmgJaA9DCOdSXFX2IWVAlIaUUpRoFU3oA2gWR0CRcQsdT5wgdX2UKGgGaAloD0MI+rmhKTvlXUCUhpRSlGgVTegDaBZHQJFx9jlPrOZ1fZQoaAZoCWgPQwhQqn06HndZQJSGlFKUaBVN6ANoFkdAkX0ACbMHKXV9lChoBmgJaA9DCHMSSl8IXVRAlIaUUpRoFU3oA2gWR0CRhQe9zwMIdX2UKGgGaAloD0MI6Etvfy5YXECUhpRSlGgVTegDaBZHQJGF2WqtHQR1fZQoaAZoCWgPQwg0EqERbMVaQJSGlFKUaBVN6ANoFkdAkY8aWkadc3V9lChoBmgJaA9DCGfw94vZK1hAlIaUUpRoFU3oA2gWR0CRkfY5T6zmdX2UKGgGaAloD0MIpz0l50RQYUCUhpRSlGgVTegDaBZHQJGYVjTa0yB1fZQoaAZoCWgPQwhLBKp/kNhjQJSGlFKUaBVN6ANoFkdAkZ+vFm4Aj3V9lChoBmgJaA9DCOAT61R5H2RAlIaUUpRoFU3oA2gWR0CRoNMFEAo5dX2UKGgGaAloD0MIhxQDJJrFWECUhpRSlGgVTegDaBZHQJGiINz8xbl1fZQoaAZoCWgPQwi8zLBRVrRiQJSGlFKUaBVN6ANoFkdAkabFhkRSP3V9lChoBmgJaA9DCGQ8SiU8IWdAlIaUUpRoFU39AWgWR0CRp2Kb8WKudX2UKGgGaAloD0MIUHKHTWSQZECUhpRSlGgVTegDaBZHQJHDdW5paid1fZQoaAZoCWgPQwgeFmpN85JlQJSGlFKUaBVN6ANoFkdAkcVPPX05EXV9lChoBmgJaA9DCP4PsFbtql5AlIaUUpRoFU3oA2gWR0CRx4VrAP/adX2UKGgGaAloD0MIAP2+f3MAYkCUhpRSlGgVTegDaBZHQJHIpUEPlMh1fZQoaAZoCWgPQwgnEkw1s3ReQJSGlFKUaBVN6ANoFkdAkcklkhA4XHV9lChoBmgJaA9DCCtsBrgg9F9AlIaUUpRoFU3oA2gWR0CRyff+jua4dX2UKGgGaAloD0MImiMrvwwAY0CUhpRSlGgVTegDaBZHQJHUjl7tzCF1fZQoaAZoCWgPQwhlcJS8ukBmQJSGlFKUaBVNHgJoFkdAkdqWwaBI4HV9lChoBmgJaA9DCCE6BI4Evl5AlIaUUpRoFU3oA2gWR0CR3a/WUbDNdX2UKGgGaAloD0MImbhVEAOlW0CUhpRSlGgVTegDaBZHQJHoMMXrMTx1fZQoaAZoCWgPQwjXaaSlcndgQJSGlFKUaBVN6ANoFkdAketNsSCe3HV9lChoBmgJaA9DCAOy17s/yjPAlIaUUpRoFU0TAWgWR0CR71hky1u0dX2UKGgGaAloD0MIuvjbniBZM8CUhpRSlGgVTQkBaBZHQJHxoQJ5VwR1fZQoaAZoCWgPQwh0llmE4lBjQJSGlFKUaBVN6ANoFkdAkfIhJZntfHV9lChoBmgJaA9DCH7iAPr91GBAlIaUUpRoFU3oA2gWR0CR+ZbBGhEjdX2UKGgGaAloD0MI6rRug9oSXkCUhpRSlGgVTegDaBZHQJH6rECNjsl1fZQoaAZoCWgPQwjChNGsbDtYQJSGlFKUaBVN6ANoFkdAkgCVFYuCgHV9lChoBmgJaA9DCFPNrKUAjGBAlIaUUpRoFU3oA2gWR0CSAS2USqVAdX2UKGgGaAloD0MIDR07qMRCW0CUhpRSlGgVTegDaBZHQJIY1WxQizN1fZQoaAZoCWgPQwiamZmZmWRYQJSGlFKUaBVN6ANoFkdAkhq1RDTjN3V9lChoBmgJaA9DCB2Txf1HwlxAlIaUUpRoFU3oA2gWR0CSHM0O3DvWdX2UKGgGaAloD0MIkzXqIRodXECUhpRSlGgVTegDaBZHQJId77EYO2B1fZQoaAZoCWgPQwj0+pP4XAJiQJSGlFKUaBVN6ANoFkdAkh51DjR2KXV9lChoBmgJaA9DCE58taO4amFAlIaUUpRoFU3oA2gWR0CSH0BRQ79ydX2UKGgGaAloD0MInN7F+3EgZUCUhpRSlGgVTegDaBZHQJIphALRa5h1fZQoaAZoCWgPQwjIRbWIKBIzQJSGlFKUaBVNRAFoFkdAkjD+mWMS9XV9lChoBmgJaA9DCJdUbTfBJ1lAlIaUUpRoFU3oA2gWR0CSOzbADaGpdX2UKGgGaAloD0MIje21oPdGGsCUhpRSlGgVTRwBaBZHQJI8oYUFjd51fZQoaAZoCWgPQwjZ7h6g+/VdQJSGlFKUaBVN6ANoFkdAkj4WViWmg3V9lChoBmgJaA9DCGDMlqyKKGBAlIaUUpRoFU3oA2gWR0CSQYcclw98dX2UKGgGaAloD0MIG53zUxzIWECUhpRSlGgVTegDaBZHQJJDaKO1fE51fZQoaAZoCWgPQwjpYtNKIe1dQJSGlFKUaBVN6ANoFkdAkkPKWX1J2HV9lChoBmgJaA9DCLfQlQhUJl9AlIaUUpRoFU3oA2gWR0CSScNaQmu1dX2UKGgGaAloD0MI/TOD+MCiNcCUhpRSlGgVS/1oFkdAkko+qioKlnV9lChoBmgJaA9DCLGnHf4abWFAlIaUUpRoFU3oA2gWR0CSSrDV6NVBdX2UKGgGaAloD0MIEf3a+uk9WkCUhpRSlGgVTegDaBZHQJJPpzYEnst1fZQoaAZoCWgPQwh4l4v4TiRdQJSGlFKUaBVN6ANoFkdAklAuSOinHnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebb19737ce964ea48f87b33b9f97488bdd627dd5b1ff1d579d264300d0d75c89
3
+ size 147218
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb337e84040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb337e840d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb337e84160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb337e841f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb337e84280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb337e84310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb337e843a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb337e84430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb337e844c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb337e84550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb337e845e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb337e804b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673126808791139628,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Y0zu4RvO5lSjfOURMxjSNWZY67I4DuQAAgD8AAIA/OmdgPo1U4D7CxIE9AeKDvtOK9D1xhJg8AAAAAAAAAACAudm9GId8P7KXXL1P64S+Sv3uvF+TpzsAAAAAAAAAANo6qz6x0ec+6PuXvLpxLL6iy/A8togPPQAAAAAAAAAAzdH+vFJwyrlj8pi6xLyBtPmO4rsTk7Y5AACAPwAAgD8A5iG9e66jupZo37sT27I5j8nfOhokYDoAAIA/AACAPw1x4r0SX5U8ZYF1PR5TEL6rNeq7UFeTugAAAAAAAAAATf8Svbu8WT/Yo1A9gmZ4vtO1rTxZ7qM9AAAAAAAAAAAmnqq99lABuq336re6cpKy2Lmgu6w/DDcAAIA/AACAP6ao4j2PFl26jVkROi9IRzUdol47YWUpuQAAgD8AAIA/GnICPRRAsrobz/45FRcANVnC5LmWrBG5AACAPwAAgD9m9Fg+4SK8vLBZc7sDGdE5BhopvmZXnDoAAIA/AACAP2Y9aD4SANk8kECaPM2BjL19z8Q890eavQAAAAAAAAAAgFgXPa4FmbpOC4O4/GJ2s3vl6jm7aJc3AACAPwAAgD9Nr+o9H73NuREPtLqUBqG2xPu5ut8VhLgAAIA/AACAP0vIrL64ptA+9gewPTzcF75SAko9+7sHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx/SEJR5YWkCUhpRSlIwBbJRN6AOMAXSUR0CQgKxlxwQ2dX2UKGgGaAloD0MIz6J3KuBoYUCUhpRSlGgVTegDaBZHQJCCjG6wt8N1fZQoaAZoCWgPQwhkQPZ695RdQJSGlFKUaBVN6ANoFkdAkIkfci4axXV9lChoBmgJaA9DCAZGXtbEs1tAlIaUUpRoFU3oA2gWR0CQi7LqlgtwdX2UKGgGaAloD0MIQrPr3go+YECUhpRSlGgVTegDaBZHQJCMqL3sXzl1fZQoaAZoCWgPQwjPhvwzg2A/wJSGlFKUaBVNAgFoFkdAkJCcfvF3p3V9lChoBmgJaA9DCBQ98DHYf2RAlIaUUpRoFU3oA2gWR0CQmIU83dbgdX2UKGgGaAloD0MIpMLYQpA5WUCUhpRSlGgVTegDaBZHQJCa/29L6DZ1fZQoaAZoCWgPQwjYRjzZTRdjQJSGlFKUaBVN6ANoFkdAkLKrGNrCWXV9lChoBmgJaA9DCLjqOlTToWJAlIaUUpRoFU3oA2gWR0CQu8z19ORDdX2UKGgGaAloD0MI9l0R/G9FXkCUhpRSlGgVTegDaBZHQJDAOuSwGGF1fZQoaAZoCWgPQwhdbcX+MilhQJSGlFKUaBVN6ANoFkdAkMI+qrBCU3V9lChoBmgJaA9DCPj+Bu3V1VlAlIaUUpRoFU3oA2gWR0CQxBgsK9f1dX2UKGgGaAloD0MIEANd+wI7YECUhpRSlGgVTegDaBZHQJDFErAgxJx1fZQoaAZoCWgPQwjB5hw8E+45wJSGlFKUaBVNMwFoFkdAkNVo3BHkLnV9lChoBmgJaA9DCGZPApvzDWFAlIaUUpRoFU3oA2gWR0CQ11AqNIbwdX2UKGgGaAloD0MIgjl6/N66YkCUhpRSlGgVTegDaBZHQJDZ5DArQPZ1fZQoaAZoCWgPQwgTmbnA5chgQJSGlFKUaBVN6ANoFkdAkNrGNWEK3XV9lChoBmgJaA9DCPYINUOqB1lAlIaUUpRoFU3oA2gWR0CQ3Rb8m8dxdX2UKGgGaAloD0MIeekmMQh0XUCUhpRSlGgVTegDaBZHQJDkestCiRJ1fZQoaAZoCWgPQwh8Kqc9JaFcQJSGlFKUaBVN6ANoFkdAkOdoYFaB7XV9lChoBmgJaA9DCEpE+BdBC2FAlIaUUpRoFU3oA2gWR0CQ6HX9R77bdX2UKGgGaAloD0MIWriswmaFX0CUhpRSlGgVTegDaBZHQJDstaxHG0h1fZQoaAZoCWgPQwgoYDsYMTdsQJSGlFKUaBVNjwFoFkdAkPMKgAZKnXV9lChoBmgJaA9DCL+CNGPRx1lAlIaUUpRoFU3oA2gWR0CQ9NvgWJrMdX2UKGgGaAloD0MIZ2K6EKv2bUCUhpRSlGgVTdMBaBZHQJD2CsOoYN11fZQoaAZoCWgPQwhUyJV6FoRWQJSGlFKUaBVN6ANoFkdAkPc/cBU70XV9lChoBmgJaA9DCINOCB10pWFAlIaUUpRoFU3oA2gWR0CRDrKZUkv9dX2UKGgGaAloD0MINKFJYkn5FECUhpRSlGgVTQwBaBZHQJERQE4ecQR1fZQoaAZoCWgPQwiT5Lm+D/tUQJSGlFKUaBVN6ANoFkdAkRSoixFAmnV9lChoBmgJaA9DCIiE7/0NFWlAlIaUUpRoFU2fAWgWR0CRFocQAdXDdX2UKGgGaAloD0MIYcWp1sKFV0CUhpRSlGgVTegDaBZHQJEYpuHerMl1fZQoaAZoCWgPQwhh/gqZKycwQJSGlFKUaBVNNgFoFkdAkRm8Vk+X7nV9lChoBmgJaA9DCC9pjNZR2l1AlIaUUpRoFU3oA2gWR0CRGkOZssQNdX2UKGgGaAloD0MIJcy0/SvcUkCUhpRSlGgVTegDaBZHQJEbHBvaURp1fZQoaAZoCWgPQwi/RSdLrecmQJSGlFKUaBVNWAFoFkdAkSXeW4Vh1HV9lChoBmgJaA9DCIy+gjRjnWNAlIaUUpRoFU3oA2gWR0CRLgM/QjUvdX2UKGgGaAloD0MIDeIDO/4/X0CUhpRSlGgVTegDaBZHQJEu2ULUkOZ1fZQoaAZoCWgPQwh4COOnceVaQJSGlFKUaBVN6ANoFkdAkTD3vc8DCHV9lChoBmgJaA9DCGmM1lHVulhAlIaUUpRoFU3oA2gWR0CROF+evpyIdX2UKGgGaAloD0MI+RQA4xkwYkCUhpRSlGgVTegDaBZHQJE7PxJ/XoV1fZQoaAZoCWgPQwhccXFUbkI5wJSGlFKUaBVL8WgWR0CRQZtxMnJDdX2UKGgGaAloD0MI2nQEcDNEYkCUhpRSlGgVTegDaBZHQJFJkPPLPld1fZQoaAZoCWgPQwj6tIr+0JxeQJSGlFKUaBVN6ANoFkdAkUrrcKw6hnV9lChoBmgJaA9DCM1y2eicl2RAlIaUUpRoFU3oA2gWR0CRTFRdhRZVdX2UKGgGaAloD0MIvFruzATzWkCUhpRSlGgVTegDaBZHQJFRr1WbPQh1fZQoaAZoCWgPQwhg5GVNLHJgQJSGlFKUaBVN6ANoFkdAkWq/+fh/AnV9lChoBmgJaA9DCI9SCU/og1xAlIaUUpRoFU3oA2gWR0CRbOfgaWHDdX2UKGgGaAloD0MIDK1OztDZYUCUhpRSlGgVTegDaBZHQJFvOKxcE/11fZQoaAZoCWgPQwiZoIZv4W5jQJSGlFKUaBVN6ANoFkdAkXB9MfzSTnV9lChoBmgJaA9DCOdSXFX2IWVAlIaUUpRoFU3oA2gWR0CRcQsdT5wgdX2UKGgGaAloD0MI+rmhKTvlXUCUhpRSlGgVTegDaBZHQJFx9jlPrOZ1fZQoaAZoCWgPQwhQqn06HndZQJSGlFKUaBVN6ANoFkdAkX0ACbMHKXV9lChoBmgJaA9DCHMSSl8IXVRAlIaUUpRoFU3oA2gWR0CRhQe9zwMIdX2UKGgGaAloD0MI6Etvfy5YXECUhpRSlGgVTegDaBZHQJGF2WqtHQR1fZQoaAZoCWgPQwg0EqERbMVaQJSGlFKUaBVN6ANoFkdAkY8aWkadc3V9lChoBmgJaA9DCGfw94vZK1hAlIaUUpRoFU3oA2gWR0CRkfY5T6zmdX2UKGgGaAloD0MIpz0l50RQYUCUhpRSlGgVTegDaBZHQJGYVjTa0yB1fZQoaAZoCWgPQwhLBKp/kNhjQJSGlFKUaBVN6ANoFkdAkZ+vFm4Aj3V9lChoBmgJaA9DCOAT61R5H2RAlIaUUpRoFU3oA2gWR0CRoNMFEAo5dX2UKGgGaAloD0MIhxQDJJrFWECUhpRSlGgVTegDaBZHQJGiINz8xbl1fZQoaAZoCWgPQwi8zLBRVrRiQJSGlFKUaBVN6ANoFkdAkabFhkRSP3V9lChoBmgJaA9DCGQ8SiU8IWdAlIaUUpRoFU39AWgWR0CRp2Kb8WKudX2UKGgGaAloD0MIUHKHTWSQZECUhpRSlGgVTegDaBZHQJHDdW5paid1fZQoaAZoCWgPQwgeFmpN85JlQJSGlFKUaBVN6ANoFkdAkcVPPX05EXV9lChoBmgJaA9DCP4PsFbtql5AlIaUUpRoFU3oA2gWR0CRx4VrAP/adX2UKGgGaAloD0MIAP2+f3MAYkCUhpRSlGgVTegDaBZHQJHIpUEPlMh1fZQoaAZoCWgPQwgnEkw1s3ReQJSGlFKUaBVN6ANoFkdAkcklkhA4XHV9lChoBmgJaA9DCCtsBrgg9F9AlIaUUpRoFU3oA2gWR0CRyff+jua4dX2UKGgGaAloD0MImiMrvwwAY0CUhpRSlGgVTegDaBZHQJHUjl7tzCF1fZQoaAZoCWgPQwhlcJS8ukBmQJSGlFKUaBVNHgJoFkdAkdqWwaBI4HV9lChoBmgJaA9DCCE6BI4Evl5AlIaUUpRoFU3oA2gWR0CR3a/WUbDNdX2UKGgGaAloD0MImbhVEAOlW0CUhpRSlGgVTegDaBZHQJHoMMXrMTx1fZQoaAZoCWgPQwjXaaSlcndgQJSGlFKUaBVN6ANoFkdAketNsSCe3HV9lChoBmgJaA9DCAOy17s/yjPAlIaUUpRoFU0TAWgWR0CR71hky1u0dX2UKGgGaAloD0MIuvjbniBZM8CUhpRSlGgVTQkBaBZHQJHxoQJ5VwR1fZQoaAZoCWgPQwh0llmE4lBjQJSGlFKUaBVN6ANoFkdAkfIhJZntfHV9lChoBmgJaA9DCH7iAPr91GBAlIaUUpRoFU3oA2gWR0CR+ZbBGhEjdX2UKGgGaAloD0MI6rRug9oSXkCUhpRSlGgVTegDaBZHQJH6rECNjsl1fZQoaAZoCWgPQwjChNGsbDtYQJSGlFKUaBVN6ANoFkdAkgCVFYuCgHV9lChoBmgJaA9DCFPNrKUAjGBAlIaUUpRoFU3oA2gWR0CSAS2USqVAdX2UKGgGaAloD0MIDR07qMRCW0CUhpRSlGgVTegDaBZHQJIY1WxQizN1fZQoaAZoCWgPQwiamZmZmWRYQJSGlFKUaBVN6ANoFkdAkhq1RDTjN3V9lChoBmgJaA9DCB2Txf1HwlxAlIaUUpRoFU3oA2gWR0CSHM0O3DvWdX2UKGgGaAloD0MIkzXqIRodXECUhpRSlGgVTegDaBZHQJId77EYO2B1fZQoaAZoCWgPQwj0+pP4XAJiQJSGlFKUaBVN6ANoFkdAkh51DjR2KXV9lChoBmgJaA9DCE58taO4amFAlIaUUpRoFU3oA2gWR0CSH0BRQ79ydX2UKGgGaAloD0MInN7F+3EgZUCUhpRSlGgVTegDaBZHQJIphALRa5h1fZQoaAZoCWgPQwjIRbWIKBIzQJSGlFKUaBVNRAFoFkdAkjD+mWMS9XV9lChoBmgJaA9DCJdUbTfBJ1lAlIaUUpRoFU3oA2gWR0CSOzbADaGpdX2UKGgGaAloD0MIje21oPdGGsCUhpRSlGgVTRwBaBZHQJI8oYUFjd51fZQoaAZoCWgPQwjZ7h6g+/VdQJSGlFKUaBVN6ANoFkdAkj4WViWmg3V9lChoBmgJaA9DCGDMlqyKKGBAlIaUUpRoFU3oA2gWR0CSQYcclw98dX2UKGgGaAloD0MIG53zUxzIWECUhpRSlGgVTegDaBZHQJJDaKO1fE51fZQoaAZoCWgPQwjpYtNKIe1dQJSGlFKUaBVN6ANoFkdAkkPKWX1J2HV9lChoBmgJaA9DCLfQlQhUJl9AlIaUUpRoFU3oA2gWR0CSScNaQmu1dX2UKGgGaAloD0MI/TOD+MCiNcCUhpRSlGgVS/1oFkdAkko+qioKlnV9lChoBmgJaA9DCLGnHf4abWFAlIaUUpRoFU3oA2gWR0CSSrDV6NVBdX2UKGgGaAloD0MIEf3a+uk9WkCUhpRSlGgVTegDaBZHQJJPpzYEnst1fZQoaAZoCWgPQwh4l4v4TiRdQJSGlFKUaBVN6ANoFkdAklAuSOinHnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f27e8dbb946b764d92124631208e930664986b054c342e07db711d80dc14fb04
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b531ed05cebb66778c9bfe13eabdca86c9bed656868c2031829b834257e6b7a0
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (227 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 214.3795485683682, "std_reward": 19.753242908782767, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T21:52:52.459680"}