{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4a79b3e240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687335148560493187, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp9ubwpwCO6NUOXupE5+jTOFa47eGqxOQAAgD8AAIA/5kt4vUiTnT110/Y8OgJZvv5EJrxGl0C9AAAAAAAAAACAG7O9RSMCP6pQuj25qzq+VIGvPb3ZtT0AAAAAAAAAAM0Z0TxI2ZK6yrIYOMChBjOpH+u64v4wtwAAgD8AAIA/7RE8Po1Ubz6mA9K9Dh1hvhs5wDyDtlu9AAAAAAAAAAAal9i9v1nvPsWB2TusRSG+MZInOx3fyzwAAAAAAAAAAG2CJb5LWCI/kEbnPcOHZb4pDlk9vh6dvQAAAAAAAAAA8w7vvWwQoD/1DNm+6vC4vqWzJ74Vc0a+AAAAAAAAAABa81Y+aJanP1Lknj4Pvp++JxafPiK/Lb0AAAAAAAAAAA1K2r1Fpg0/Cp8PPnaClb5XMxs9FPQOPQAAAAAAAAAAMyL6PClocrptPeo6WujiNd5ZKjnXMgm6AACAPwAAgD9mUxq9ewaXuuZqOLoxZmS1LZXiOpZQVDkAAIA/AACAP5q1T7xSCvS7rLFKPP81lDwzM0M91m94vQAAgD8AAIA/AAzWuznSIT89KGq94Sx4vgSiZr22jSC9AAAAAAAAAABzM549w4VJumKGjTsip/o1uzWDu0zSpboAAIA/AACAPxrtDj2r18M9E4IsPCJ5ZL4OK8i8qlCouwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSupNCZ4OeMAWyUTegDjAF0lEdAmWibm2b5M3V9lChoBkdAYYpXYlIEsGgHTegDaAhHQJlp13yI55t1fZQoaAZHQGYkfwqiGnJoB03oA2gIR0CZgHGnXNC7dX2UKGgGR0BiEY4CIUJwaAdN6ANoCEdAmYNXRw6ySnV9lChoBkdAZKYBshxHXmgHTegDaAhHQJmIT3N9ph51fZQoaAZHQGGQyNwR5C5oB03oA2gIR0CZiqSPU8V6dX2UKGgGR0BijB59mYjTaAdN6ANoCEdAmY6eGKyfMHV9lChoBkdAY5dgIhQm/mgHTegDaAhHQJmW+ISDh991fZQoaAZHQDmbMTviLl5oB0vkaAhHQJmYhfVqesh1fZQoaAZHQGI44Qrc0tRoB03oA2gIR0CZnITOgQHzdX2UKGgGR0BiUNcY64lQaAdN6ANoCEdAmZzE/SpiqnV9lChoBkdAYUMmBvrGBGgHTegDaAhHQJmfnqB3A211fZQoaAZHQGQ2px//echoB03oA2gIR0CZpi3kPtladX2UKGgGR0BiKpbQkX1raAdN6ANoCEdAmaeEwi7kGXV9lChoBkdAX+jXrdFfA2gHTegDaAhHQJmwhfpljEx1fZQoaAZHQGLbHhKlHjJoB03oA2gIR0CZuE3OfNA1dX2UKGgGR0BiUtfoicG1aAdN6ANoCEdAmbtswco6S3V9lChoBkdAYNt09QoCuGgHTegDaAhHQJm91C0F8oh1fZQoaAZHQGMYdHMEA5toB03oA2gIR0CZvx4mCyyEdX2UKGgGR0Bl21FF2FFlaAdN6ANoCEdAmcBbyUcGT3V9lChoBkdAYJI7FsHjZWgHTegDaAhHQJnTpesxO+J1fZQoaAZHQE9mcoYvWYpoB00UAWgIR0CZ1Q63y7PIdX2UKGgGR0BnfCn1nM+vaAdN6ANoCEdAmdjDxoZhrnV9lChoBkdAZmbK1XvH92gHTegDaAhHQJnfIwudwvR1fZQoaAZHQGY7tbcGkepoB03oA2gIR0CZ6NiqhlDndX2UKGgGR0BlHsaya/h3aAdN6ANoCEdAmesTR6Ww/3V9lChoBkdAUCDTF2mpEWgHTSMBaAhHQJntEMH8jzJ1fZQoaAZHQGaTSe7L+xZoB03oA2gIR0CZ8XwMH8jzdX2UKGgGR0BmlzZ13dKvaAdN6ANoCEdAmfHn1J17pnV9lChoBkdAYzuWgvlEJGgHTegDaAhHQJn2AvCdjG11fZQoaAZHQGHm+rU9ZA9oB03oA2gIR0CZ/SvM8ox6dX2UKGgGR0BGQp2MbWEsaAdNDQFoCEdAmf3ruMMqjXV9lChoBkdAXSl2ZAprlGgHTegDaAhHQJn+hDc/MW51fZQoaAZHQEj2fbsWweNoB00IAWgIR0CZ/unO0LMLdX2UKGgGR0BC2fqgRK6GaAdL9WgIR0CZ/wVlf7aadX2UKGgGR0BHJQIt16mgaAdL9WgIR0CaATV1fVqfdX2UKGgGR0Aw2ekHlfZ3aAdL5GgIR0CaAqQdjoZAdX2UKGgGR0BjrpQJokAxaAdN6ANoCEdAmgkJ00WM0nV9lChoBkdAZK7ffGdZq2gHTegDaAhHQJoK8qOLiuN1fZQoaAZHQGRVQVTJhfBoB03oA2gIR0CaDMPhybQUdX2UKGgGR0Bguq6lLvkSaAdN6ANoCEdAmg4USAYpD3V9lChoBkdALUKLS/j81mgHS/doCEdAmg4TIzWPLnV9lChoBkdAYRqR15jYqWgHTegDaAhHQJoPPRgJC0F1fZQoaAZHQGYmEal1r7BoB03oA2gIR0CaI48WKuSwdX2UKGgGR0BkLT1VYISlaAdN6ANoCEdAmiVbO3UhFHV9lChoBkdAZNlmig00nGgHTegDaAhHQJozc1qFh5R1fZQoaAZHQGOWRHf/FR5oB03oA2gIR0CaQt/xUedTdX2UKGgGR0BwdO9oN/e+aAdNWgJoCEdAmkhVpKzzE3V9lChoBkdAZuhuVopQUGgHTegDaAhHQJpOhON5t3x1fZQoaAZHQGSp87ZFoctoB03oA2gIR0CaT2ldC3PSdX2UKGgGR0BimHP7el9CaAdN6ANoCEdAmlAY8Md92HV9lChoBkdAYQgv2Xb/O2gHTegDaAhHQJpQkeV9nbt1fZQoaAZHQGSGLiEQGwBoB03oA2gIR0CaULG7jDKpdX2UKGgGR0BgfPJiiItUaAdN6ANoCEdAmlTWk30f5nV9lChoBkdAR4AoJAt4A2gHS+poCEdAmly7aufVZ3V9lChoBkdAY7pmbLEDQ2gHTegDaAhHQJpdLw4KhL51fZQoaAZHQFwFVuJk5IZoB03oA2gIR0CaX9jRlYlqdX2UKGgGR0BjU8yN4qwyaAdN6ANoCEdAmmR3G0eEI3V9lChoBkdAYubItlI3BGgHTegDaAhHQJpkejJuEVZ1fZQoaAZHQGEdYLCvX9RoB03oA2gIR0CaZkrrPdEcdX2UKGgGR0BlUFBhQWN4aAdN6ANoCEdAmmoNkBjnWHV9lChoBkdAYuiLXL/0d2gHTegDaAhHQJp8k5EMLF51fZQoaAZHQGG8TNMXaaloB03oA2gIR0CahzTqjaf0dX2UKGgGR0BkWf3+MqBmaAdN6ANoCEdAmpga0IC2dHV9lChoBkdAOLPf8/D+BGgHTQcBaAhHQJqb9H7P6bh1fZQoaAZHQGMcUCq6vq1oB03oA2gIR0Can4OB19v1dX2UKGgGR0BlJOCmMwUQaAdN6ANoCEdAmqiUr5IpY3V9lChoBkdAZS0vs7dSEWgHTegDaAhHQJqpbyd4FA51fZQoaAZHQGJopKJ2t+1oB03oA2gIR0CaqiiVjZtfdX2UKGgGR0BmXhzvJA+qaAdN6ANoCEdAmqpTfm9xqHV9lChoBkdAYjPavicXnGgHTegDaAhHQJqv5N/OMVF1fZQoaAZHQEmwJDVpblloB00GAWgIR0CasZ1PnB+GdX2UKGgGR0Bj90WZZ0SzaAdN6ANoCEdAmrk4aLn9vXV9lChoBkdAX4LZIxxku2gHTegDaAhHQJq5pe0G/vh1fZQoaAZHQGPs62F36hxoB03oA2gIR0CavAzundftdX2UKGgGR0BBODBVMmF8aAdL+WgIR0CavHrsSkCWdX2UKGgGR0AvjHYpUgjhaAdL+2gIR0CavK++ueSTdX2UKGgGR0BkrthRZU1iaAdN6ANoCEdAmr7F3Ux20XV9lChoBkdAZSW85CF9KGgHTegDaAhHQJq+xREWqLl1fZQoaAZHQGPzGahHskZoB03oA2gIR0Cav8I+4b0fdX2UKGgGR0BhT1ix3V0+aAdN6ANoCEdAmsH7DhtLtnV9lChoBkdAZ91qM3qA0GgHTegDaAhHQJrDEzXSSeR1fZQoaAZHQFHvcYIjW09oB0vgaAhHQJrfpkOI68x1fZQoaAZHQF6DvxH5JshoB03oA2gIR0Ca8ni1iONpdX2UKGgGR0BnojOLR8c/aAdN6ANoCEdAmvgnHzYmLXV9lChoBkdAXva+sYEW7GgHTegDaAhHQJr/wLZzxPR1fZQoaAZHQGWPw+lj3EhoB03oA2gIR0CbAJnRb8m8dX2UKGgGR0BjE09Mbm2caAdN6ANoCEdAmwbIwM6RyXV9lChoBkdAYxP0f5k9U2gHTegDaAhHQJsIe+36Q/51fZQoaAZHv5VsDW9US7JoB00YAWgIR0CbDSSh8IAwdX2UKGgGR0Bli+5avA45aAdN6ANoCEdAmxFca0hNd3V9lChoBkdAYwPxhlUZN2gHTegDaAhHQJsR3zpX6qN1fZQoaAZHQGWnMpG4I8hoB03oA2gIR0CbFQ4EfT1DdX2UKGgGR0BlY8LhJiAlaAdN6ANoCEdAmxXTeGfwqnV9lChoBkdAYeh/xUedTmgHTegDaAhHQJsWLf1pTMt1fZQoaAZHQEK6nzg/C69oB00lAWgIR0CbGKiVB2OidX2UKGgGR0Bgv+A9V3lkaAdN6ANoCEdAmxmOh4+r2nV9lChoBkdAXojR2KVIJGgHTegDaAhHQJsZkpjMFEB1fZQoaAZHQGNewla8pTdoB03oA2gIR0CbHdJul41QdX2UKGgGR0Bixc/4ZdfLaAdN6ANoCEdAmx76g/Tsp3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}