ellisdoro commited on
Commit
206dca2
·
verified ·
1 Parent(s): 63071e9

Upload agro_all-MiniLM-L6-v2_cross_attention_gcn_h512_o64_cosine_e1024_early model created with on2vec

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 1_TokenOntologyFusionModule/ontology_data.json filter=lfs diff=lfs merge=lfs -text
1_TokenOntologyFusionModule/config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "base_model_dim": 384,
3
+ "top_k_concepts": 5,
4
+ "fusion_method": "cross_attention",
5
+ "concept_weight": 0.2,
6
+ "relevance_threshold": 0.3,
7
+ "max_concepts_per_batch": 100
8
+ }
1_TokenOntologyFusionModule/ontology_data.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2fe699e5b734dd7c4a1e776fc8bdb9507e80fb6cf6254a550f2c8f36b6d9283
3
+ size 34497895
1_TokenOntologyFusionModule/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3169aa4697ed1e620c4b2c7c223179ec13c16c88fa24f99c26db8fd56ebb07a
3
+ size 3553160
2_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: all-MiniLM-L6-v2
3
+ library_name: sentence-transformers
4
+ license: apache-2.0
5
+ pipeline_tag: sentence-similarity
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - ontology
11
+ - on2vec
12
+ - graph-neural-networks
13
+ - base-all-MiniLM-L6-v2
14
+ - general
15
+ - general-ontology
16
+ - fusion-cross_attention
17
+ - gnn-gcn
18
+ - medium-ontology
19
+ ---
20
+
21
+ # agro_all-MiniLM-L6-v2_cross_attention_gcn_h512_o64_cosine_e1024_early
22
+
23
+ This is a sentence-transformers model created with [on2vec](https://github.com/david4096/on2vec), which augments text embeddings with ontological knowledge using Graph Neural Networks.
24
+
25
+ ## Model Details
26
+
27
+ - **Base Text Model**: all-MiniLM-L6-v2
28
+ - Text Embedding Dimension: 384
29
+ - **Ontology**: agro.owl
30
+ - **Domain**: general
31
+ - **Ontology Concepts**: 4,162
32
+ - **Concept Alignment**: 4,162/4,162 (100.0%)
33
+ - **Fusion Method**: cross_attention
34
+ - **GNN Architecture**: GCN
35
+ - **Structural Embedding Dimension**: 4162
36
+ - **Output Embedding Dimension**: 64
37
+ - **Hidden Dimensions**: 512
38
+ - **Dropout**: 0.0
39
+ - **Training Date**: 2025-09-19
40
+ - **on2vec Version**: 0.1.0
41
+ - **Source Ontology Size**: 7.2 MB
42
+ - **Model Size**: 123.8 MB
43
+ - **Library**: on2vec + sentence-transformers
44
+
45
+ ## Technical Architecture
46
+
47
+ This model uses a multi-stage architecture:
48
+
49
+ 1. **Text Encoding**: Input text is encoded using the base sentence-transformer model
50
+ 2. **Ontological Embedding**: Pre-trained GNN embeddings capture structural relationships
51
+ 3. **Fusion Layer**: Simple concatenation of text and ontological embeddings
52
+
53
+ **Embedding Flow:**
54
+ - Text: 384 dimensions → 512 hidden → 64 output
55
+ - Structure: 4162 concepts → GNN → 64 output
56
+ - Fusion: cross_attention → Final embedding
57
+
58
+ ## How It Works
59
+
60
+ This model combines:
61
+ 1. **Text Embeddings**: Generated using the base sentence-transformer model
62
+ 2. **Ontological Embeddings**: Created by training Graph Neural Networks on OWL ontology structure
63
+ 3. **Fusion Layer**: Combines both embedding types using the specified fusion method
64
+
65
+ The ontological knowledge helps the model better understand domain-specific relationships and concepts.
66
+
67
+ ## Usage
68
+
69
+ ```python
70
+ from sentence_transformers import SentenceTransformer
71
+
72
+ # Load the model
73
+ model = SentenceTransformer('agro_all-MiniLM-L6-v2_cross_attention_gcn_h512_o64_cosine_e1024_early')
74
+
75
+ # Generate embeddings
76
+ sentences = ['Example sentence 1', 'Example sentence 2']
77
+ embeddings = model.encode(sentences)
78
+
79
+ # Compute similarity
80
+ from sentence_transformers.util import cos_sim
81
+ similarity = cos_sim(embeddings[0], embeddings[1])
82
+ ```
83
+
84
+ ## Training Process
85
+
86
+ This model was created using the on2vec pipeline:
87
+
88
+ 1. **Ontology Processing**: The OWL ontology was converted to a graph structure
89
+ 2. **GNN Training**: Graph Neural Networks were trained to learn ontological relationships
90
+ 3. **Text Integration**: Base model text embeddings were combined with ontological embeddings
91
+ 4. **Fusion Training**: The fusion layer was trained to optimally combine both embedding types
92
+
93
+ ## Intended Use
94
+
95
+ This model is particularly effective for:
96
+ - General domain text processing
97
+ - Tasks requiring understanding of domain-specific relationships
98
+ - Semantic similarity in specialized domains
99
+ - Classification tasks with domain knowledge requirements
100
+
101
+ ## Limitations
102
+
103
+ - Performance may vary on domains different from the training ontology
104
+ - Ontological knowledge is limited to concepts present in the source OWL file
105
+ - May have higher computational requirements than vanilla text models
106
+
107
+ ## Citation
108
+
109
+ If you use this model, please cite the on2vec framework:
110
+
111
+ ```bibtex
112
+ @software{on2vec,
113
+ title={on2vec: Ontology Embeddings with Graph Neural Networks},
114
+ author={David Steinberg},
115
+ url={https://github.com/david4096/on2vec},
116
+ year={2024}
117
+ }
118
+ ```
119
+
120
+ ---
121
+
122
+ Created with [on2vec](https://github.com/david4096/on2vec) 🧬→🤖
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.56.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.56.1",
6
+ "pytorch": "2.6.0"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1377e9af0ca0b016a9f2aa584d6fc71ab3ea6804fae21ef9fb1416e2944057ac
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_TokenOntologyFusionModule",
12
+ "type": "on2vec.sentence_transformer_hub.TokenOntologyFusionModule"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Pooling",
18
+ "type": "sentence_transformers.models.Pooling"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff