File size: 2,809 Bytes
6371d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: distilbert-base-uncased_fold_3_ternary_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_fold_3_ternary_v1

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8908
- F1: 0.7879

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 289  | 0.5873          | 0.7636 |
| 0.5479        | 2.0   | 578  | 0.5788          | 0.7697 |
| 0.5479        | 3.0   | 867  | 0.6286          | 0.7770 |
| 0.2412        | 4.0   | 1156 | 0.8845          | 0.7661 |
| 0.2412        | 5.0   | 1445 | 0.9894          | 0.7818 |
| 0.1191        | 6.0   | 1734 | 1.0856          | 0.7842 |
| 0.0543        | 7.0   | 2023 | 1.2852          | 0.7830 |
| 0.0543        | 8.0   | 2312 | 1.4295          | 0.7673 |
| 0.0223        | 9.0   | 2601 | 1.4716          | 0.7806 |
| 0.0223        | 10.0  | 2890 | 1.6007          | 0.7636 |
| 0.0122        | 11.0  | 3179 | 1.6744          | 0.7673 |
| 0.0122        | 12.0  | 3468 | 1.6954          | 0.7685 |
| 0.0129        | 13.0  | 3757 | 1.7273          | 0.7733 |
| 0.0057        | 14.0  | 4046 | 1.7114          | 0.7758 |
| 0.0057        | 15.0  | 4335 | 1.7480          | 0.7733 |
| 0.0045        | 16.0  | 4624 | 1.8322          | 0.7830 |
| 0.0045        | 17.0  | 4913 | 1.7448          | 0.7830 |
| 0.0047        | 18.0  | 5202 | 1.8126          | 0.7782 |
| 0.0047        | 19.0  | 5491 | 1.9021          | 0.7673 |
| 0.0018        | 20.0  | 5780 | 1.9011          | 0.7830 |
| 0.0026        | 21.0  | 6069 | 1.8771          | 0.7806 |
| 0.0026        | 22.0  | 6358 | 1.8634          | 0.7806 |
| 0.0012        | 23.0  | 6647 | 1.8926          | 0.7830 |
| 0.0012        | 24.0  | 6936 | 1.8922          | 0.7855 |
| 0.0005        | 25.0  | 7225 | 1.8908          | 0.7879 |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1