File size: 2,809 Bytes
0f244e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: distilbert-base-uncased_fold_7_ternary_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_fold_7_ternary_v1

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0462
- F1: 0.7836

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 291  | 0.5719          | 0.7490 |
| 0.5541        | 2.0   | 582  | 0.5563          | 0.7836 |
| 0.5541        | 3.0   | 873  | 0.7301          | 0.7849 |
| 0.2509        | 4.0   | 1164 | 0.8073          | 0.7926 |
| 0.2509        | 5.0   | 1455 | 1.0842          | 0.7823 |
| 0.1182        | 6.0   | 1746 | 1.1721          | 0.7900 |
| 0.0537        | 7.0   | 2037 | 1.4060          | 0.7785 |
| 0.0537        | 8.0   | 2328 | 1.4497          | 0.7836 |
| 0.0262        | 9.0   | 2619 | 1.4722          | 0.7708 |
| 0.0262        | 10.0  | 2910 | 1.6529          | 0.7772 |
| 0.0131        | 11.0  | 3201 | 1.6573          | 0.7862 |
| 0.0131        | 12.0  | 3492 | 1.6986          | 0.7823 |
| 0.0115        | 13.0  | 3783 | 1.7765          | 0.7810 |
| 0.0098        | 14.0  | 4074 | 1.8036          | 0.7862 |
| 0.0098        | 15.0  | 4365 | 1.7684          | 0.7926 |
| 0.0028        | 16.0  | 4656 | 1.8385          | 0.7836 |
| 0.0028        | 17.0  | 4947 | 1.7903          | 0.7887 |
| 0.0054        | 18.0  | 5238 | 1.9065          | 0.7810 |
| 0.0007        | 19.0  | 5529 | 1.9331          | 0.7875 |
| 0.0007        | 20.0  | 5820 | 1.9384          | 0.7849 |
| 0.0006        | 21.0  | 6111 | 1.8687          | 0.7887 |
| 0.0006        | 22.0  | 6402 | 2.0603          | 0.7785 |
| 0.0009        | 23.0  | 6693 | 2.0403          | 0.7836 |
| 0.0009        | 24.0  | 6984 | 2.0348          | 0.7810 |
| 0.0005        | 25.0  | 7275 | 2.0462          | 0.7836 |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1